Sglp là gì

1. Thomas B. The Global Burden of Diabetic Kidney Disease: Time Trends and Gender Gaps. Curr. Diabet. Rep. 2019;19:18. doi: 10.1007/s11892-019-1133-6. [PubMed] [CrossRef] [Google Scholar]

2. Zha F., Bai L., Tang B., Li J., Wang Y., Zheng P., Ji T., Bai S. MicroRNA-503 contributes to podocyte injury via targeting E2F3 in diabetic nephropathy. J. Cell Biochem. 2019;120:12574–12581. doi: 10.1002/jcb.28524. [PubMed] [CrossRef] [Google Scholar]

3. Murea M., Ma L., Freedman B.I. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev. Diabet. Stud. 2012;9:6–22. doi: 10.1900/RDS.2012.9.6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Abbiss H., Maker G.L., Trengove R.D. Metabolomics Approaches for the Diagnosis and Understanding of Kidney Diseases. Metabolites. 2019;9:34. doi: 10.3390/metabo9020034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Gross J.L., de Azevedo M.J., Silveiro S.P., Canani L.H., Caramori M.L., Zelmanovitz T. Diabetic nephropathy: Diagnosis, prevention, and treatment. Diabetes Care. 2005;28:164–176. doi: 10.2337/diacare.28.1.164. [PubMed] [CrossRef] [Google Scholar]

6. Parving H.H., Lehnert H., Bröchner-Mortensen J., Gomis R., Andersen S., Arner P. Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 2001;345:870–878. doi: 10.1056/NEJMoa011489. [PubMed] [CrossRef] [Google Scholar]

7. Van der Kloet F.M., Tempels F.W., Ismail N., van der Heijden R., Kasper P.T., Rojas-Cherto M., van Doorn R., Spijksma G., Koek M., van der Greef J., et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study) Metabolomics. 2012;8:109–119. doi: 10.1007/s11306-011-0291-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Zelmanovitz T., Gerchman F., Balthazar A.P., Thomazelli F.C., Matos J.D., Canani L.H. Diabetic nephropathy. Diabet. Metab. Syndr. 2009;1:10. doi: 10.1186/1758-5996-1-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Yoon J.J., Park J.H., Kim H.J., Jin H.G., Kim H.Y., Ahn Y.M., Kim Y.C., Lee H.S., Lee Y.J., Kang D.G. Improves Glomerular Fibrosis and Renal Dysfunction in Diabetic Nephropathy Model. Nutrients. 2019;11:553. doi: 10.3390/nu11030553. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Declèves A.E., Sharma K. New pharmacological treatments for improving renal outcomes in diabetes. Nat. Rev. Nephrol. 2010;6:371–380. doi: 10.1038/nrneph.2010.57. [PubMed] [CrossRef] [Google Scholar]

11. Mogensen C.E., Christensen C.K. Predicting diabetic nephropathy in insulin-dependent patients. N. Engl. J. Med. 1984;311:89–93. doi: 10.1056/NEJM198407123110204. [PubMed] [CrossRef] [Google Scholar]

12. Parving H.H., Oxenbøll B., Svendsen P.A., Christiansen J.S., Andersen A.R. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol. (Copenh) 1982;100:550–555. doi: 10.1530/acta.0.1000550. [PubMed] [CrossRef] [Google Scholar]

13. Viberti G.C., Hill R.D., Jarrett R.J., Argyropoulos A., Mahmud U., Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet. 1982;1:1430–1432. doi: 10.1016/S0140-6736(82)92450-3. [PubMed] [CrossRef] [Google Scholar]

14. Cao Z., Cooper M.E. Pathogenesis of diabetic nephropathy. J. Diabet. Investig. 2011;2:243–247. doi: 10.1111/j.2040-1124.2011.00131.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Wei L., Xiao Y., Li L., Xiong X., Han Y., Zhu X., Sun L. The Susceptibility Genes in Diabetic Nephropathy. Kidney Dis. (Basel) 2018;4:226–237. doi: 10.1159/000492633. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Mahmoodnia L., Aghadavod E., Beigrezaei S., Rafieian-Kopaei M. An update on diabetic kidney disease, oxidative stress and antioxidant agents. J. Renal. Inj. Prev. 2017;6:153–157. doi: 10.15171/jrip.2017.30. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Pichler R., Afkarian M., Dieter B.P., Tuttle K.R. Immunity and inflammation in diabetic kidney disease: Translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Ren. Physiol. 2017;312:F716–F731. doi: 10.1152/ajprenal.00314.2016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Hill C.J., Cardwell C.R., Patterson C.C., Maxwell A.P., Magee G.M., Young R.J., Matthews B., O’Donoghue D.J., Fogarty D.G. Chronic kidney disease and diabetes in the national health service: A cross-sectional survey of the U.K. national diabetes audit. Diabet. Med. 2014;31:448–454. doi: 10.1111/dme.12312. [PubMed] [CrossRef] [Google Scholar]

19. McDonough C.W., Palmer N.D., Hicks P.J., Roh B.H., An S.S., Cooke J.N., Hester J.M., Wing M.R., Bostrom M.A., Rudock M.E., et al. A genome-wide association study for diabetic nephropathy genes in African Americans. Kidney Int. 2011;79:563–572. doi: 10.1038/ki.2010.467. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Lindblom R., Higgins G., Coughlan M., de Haan J.B. Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy. Rev. Diabet. Stud. 2015;12:134–156. doi: 10.1900/RDS.2015.12.134. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Mittal M., Siddiqui M.R., Tran K., Reddy S.P., Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014;20:1126–1167. doi: 10.1089/ars.2012.5149. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Kizivat T., Smolić M., Marić I., Tolušić Levak M., Smolić R., Bilić Čurčić I., Kuna L., Mihaljević I., Včev A., Tucak-Zorić S. Antioxidant Pre-Treatment Reduces the Toxic Effects of Oxalate on Renal Epithelial Cells in a Cell Culture Model of Urolithiasis. Int. J. Environ. Res. Public Health. 2017;14:109. doi: 10.3390/ijerph24010109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Fioretto P., Caramori M.L., Mauer M. The kidney in diabetes: Dynamic pathways of injury and repair. The Camillo Golgi Lecture 2007. Diabetologia. 2008;51:1347–1355. doi: 10.1007/s00125-008-1051-7. [PubMed] [CrossRef] [Google Scholar]

24. Tervaert T.W., Mooyaart A.L., Amann K., Cohen A.H., Cook H.T., Drachenberg C.B., Ferrario F., Fogo A.B., Haas M., de Heer E., et al. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 2010;21:556–563. doi: 10.1681/ASN.2010010010. [PubMed] [CrossRef] [Google Scholar]

25. Alicic R.Z., Rooney M.T., Tuttle K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017;12:2032–2045. doi: 10.2215/CJN.11491116. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Tyagi I., Agrawal U., Amitabh V., Jain A.K., Saxena S. Thickness of glomerular and tubular basement membranes in preclinical and clinical stages of diabetic nephropathy. Indian J. Nephrol. 2008;18:64–69. doi: 10.4103/0971-4065.42336. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Fioretto P., Mauer M. Histopathology of diabetic nephropathy. Semin. Nephrol. 2007;27:195–207. doi: 10.1016/j.semnephrol.2007.01.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Caramori M.L., Parks A., Mauer M. Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. J. Am. Soc. Nephrol. 2013;24:1175–1181. doi: 10.1681/ASN.2012070739. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Drummond K., Mauer M., Group I.D.N.S. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes. 2002;51:1580–1587. doi: 10.2337/diabetes.51.5.1580. [PubMed] [CrossRef] [Google Scholar]

30. Osterby R., Tapia J., Nyberg G., Tencer J., Willner J., Rippe B., Torffvit O. Renal structures in type 2 diabetic patients with elevated albumin excretion rate. APMIS. 2001;109:751–761. doi: 10.1034/j.1600-0463.2001.d01-142.x. [PubMed] [CrossRef] [Google Scholar]

31. Saito Y., Kida H., Takeda S., Yoshimura M., Yokoyama H., Koshino Y., Hattori N. Mesangiolysis in diabetic glomeruli: Its role in the formation of nodular lesions. Kidney Int. 1988;34:389–396. doi: 10.1038/ki.1988.193. [PubMed] [CrossRef] [Google Scholar]

32. Stout L.C., Kumar S., Whorton E.B. Focal mesangiolysis and the pathogenesis of the Kimmelstiel-Wilson nodule. Hum. Pathol. 1993;24:77–89. doi: 10.1016/0046-8177(93)90066-P. [PubMed] [CrossRef] [Google Scholar]

33. Gentilella R., Pechtner V., Corcos A., Consoli A. Glucagon-like peptide-1 receptor agonists in type 2 diabetes treatment: Are they all the same? Diabetes Metab Res. Rev. 2019;35:e3070. doi: 10.1002/dmrr.3070. [PubMed] [CrossRef] [Google Scholar]

34. Gallwitz B. Glucagon-like peptide-1 receptor agonists. In: Gough S., editor. Handbook of Incretin-Based Therapies in Type 2 Diabetes. Springer International Publishing Switzerland; Cham, Switzerland: 2016. pp. 31–43. [Google Scholar]

35. Baggio L.L., Drucker D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–2157. doi: 10.1053/j.gastro.2007.03.054. [PubMed] [CrossRef] [Google Scholar]

36. Turton M.D., O’Shea D., Gunn I., Beak S.A., Edwards C.M., Meeran K., Choi S.J., Taylor G.M., Heath M.M., Lambert P.D., et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379:69–72. doi: 10.1038/379069a0. [PubMed] [CrossRef] [Google Scholar]

37. Zhao X., Liu G., Shen H., Gao B., Li X., Fu J., Zhou J., Ji Q. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells. Int. J. Mol. Med. 2015;35:684–692. doi: 10.3892/ijmm.2014.2052. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Nauck M.A., Duran S., Kim D., Johns D., Northrup J., Festa A., Brodows R., Trautmann M. A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: A non-inferiority study. Diabetologia. 2007;50:259–267. doi: 10.1007/s00125-006-0510-2. [PubMed] [CrossRef] [Google Scholar]

39. Buse J.B., Bergenstal R.M., Glass L.C., Heilmann C.R., Lewis M.S., Kwan A.Y., Hoogwerf B.J., Rosenstock J. Use of twice-daily exenatide in Basal insulin-treated patients with type 2 diabetes: A randomized, controlled trial. Ann. Intern. Med. 2011;154:103–112. doi: 10.7326/0003-4819-154-2-201101180-00300. [PubMed] [CrossRef] [Google Scholar]

40. Weissman P.N., Carr M.C., Ye J., Cirkel D.T., Stewart M., Perry C., Pratley R. HARMONY 4: Randomised clinical trial comparing once-weekly albiglutide and insulin glargine in patients with type 2 diabetes inadequately controlled with metformin with or without sulfonylurea. Diabetologia. 2014;57:2475–2484. doi: 10.1007/s00125-014-3360-3. [PubMed] [CrossRef] [Google Scholar]

41. Wysham C., Blevins T., Arakaki R., Colon G., Garcia P., Atisso C., Kuhstoss D., Lakshmanan M. Efficacy and safety of dulaglutide added onto pioglitazone and metformin versus exenatide in type 2 diabetes in a randomized controlled trial (AWARD-1) Diabetes Care. 2014;37:2159–2167. doi: 10.2337/dc13-2760. [PubMed] [CrossRef] [Google Scholar]

42. Nauck M., Weinstock R.S., Umpierrez G.E., Guerci B., Skrivanek Z., Milicevic Z. Efficacy and safety of dulaglutide versus sitagliptin after 52 weeks in type 2 diabetes in a randomized controlled trial (AWARD-5) Diabetes Care. 2014;37:2149–2158. doi: 10.2337/dc13-2761. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Drucker D.J., Buse J.B., Taylor K., Kendall D.M., Trautmann M., Zhuang D., Porter L., Group D.-S. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: A randomised, open-label, non-inferiority study. Lancet. 2008;372:1240–1250. doi: 10.1016/S0140-6736(08)61206-4. [PubMed] [CrossRef] [Google Scholar]

44. Blevins T., Pullman J., Malloy J., Yan P., Taylor K., Schulteis C., Trautmann M., Porter L. DURATION-5: Exenatide once weekly resulted in greater improvements in glycemic control compared with exenatide twice daily in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2011;96:1301–1310. doi: 10.1210/jc.2010-2081. [PubMed] [CrossRef] [Google Scholar]

45. Buse J.B., Drucker D.J., Taylor K.L., Kim T., Walsh B., Hu H., Wilhelm K., Trautmann M., Shen L.Z., Porter L.E., et al. DURATION-1: Exenatide once weekly produces sustained glycemic control and weight loss over 52 weeks. Diabetes Care. 2010;33:1255–1261. doi: 10.2337/dc09-1914. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Buse J.B., Rosenstock J., Sesti G., Schmidt W.E., Montanya E., Brett J.H., Zychma M., Blonde L., Group L.-S. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: A 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6) Lancet. 2009;374:39–47. doi: 10.1016/S0140-6736(09)60659-0. [PubMed] [CrossRef] [Google Scholar]

47. Abd El Aziz M.S., Kahle M., Meier J.J., Nauck M.A. A meta-analysis comparing clinical effects of short- or long-acting GLP-1 receptor agonists versus insulin treatment from head-to-head studies in type 2 diabetic patients. Diabetes Obes. Metab. 2017;19:216–227. doi: 10.1111/dom.12804. [PubMed] [CrossRef] [Google Scholar]

48. Zaccardi F., Htike Z.Z., Webb D.R., Khunti K., Davies M.J. Benefits and Harms of Once-Weekly Glucagon-like Peptide-1 Receptor Agonist Treatments: A Systematic Review and Network Meta-analysis. Ann. Intern. Med. 2016;164:102–113. doi: 10.7326/M15-1432. [PubMed] [CrossRef] [Google Scholar]

49. DeFronzo R.A., Ratner R.E., Han J., Kim D.D., Fineman M.S., Baron A.D. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005;28:1092–1100. doi: 10.2337/diacare.28.5.1092. [PubMed] [CrossRef] [Google Scholar]

50. Lorenz M., Evers A., Wagner M. Recent progress and future options in the development of GLP-1 receptor agonists for the treatment of diabesity. Bioorg Med. Chem. Lett. 2013;23:4011–4018. doi: 10.1016/j.bmcl.2013.05.022. [PubMed] [CrossRef] [Google Scholar]

51. Yin W., Xu S., Wang Z., Liu H., Peng L., Fang Q., Deng T., Zhang W., Lou J. Recombinant human GLP-1(rhGLP-1) alleviating renal tubulointestitial injury in diabetic STZ-induced rats. Biochem. Biophys. Res. Commun. 2018;495:793–800. doi: 10.1016/j.bbrc.2017.11.076. [PubMed] [CrossRef] [Google Scholar]

52. Hills C.E., Al-Rasheed N., Willars G.B., Brunskill N.J. C-peptide reverses TGF-beta1-induced changes in renal proximal tubular cells: Implications for treatment of diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 2009;296:F614–F621. doi: 10.1152/ajprenal.90500.2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Kodera R., Shikata K., Kataoka H.U., Takatsuka T., Miyamoto S., Sasaki M., Kajitani N., Nishishita S., Sarai K., Hirota D., et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia. 2011;54:965–978. doi: 10.1007/s00125-010-2028-x. [PubMed] [CrossRef] [Google Scholar]

54. Leech C.A., Holz G.G., Habener J.F. Signal transduction of PACAP and GLP-1 in pancreatic beta cells. Ann. N. Y. Acad. Sci. 1996;805:81–92. doi: 10.1111/j.1749-6632.1996.tb17475.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Holz G.G. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes. 2004;53:5–13. doi: 10.2337/diabetes.53.1.5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Bengis-Garber C., Gruener N. Protein kinase A downregulates the phosphorylation of p47 phox in human neutrophils: A possible pathway for inhibition of the respiratory burst. Cell Signal. 1996;8:291–296. doi: 10.1016/0898-6568(96)00052-6. [PubMed] [CrossRef] [Google Scholar]

57. Savitha G., Salimath B.P. Cross-talk between protein kinase C and protein kinase A down-regulates the respiratory burst in polymorphonuclear leukocytes. Cell Signal. 1993;5:107–117. doi: 10.1016/0898-6568(93)90063-R. [PubMed] [CrossRef] [Google Scholar]

58. Hendarto H., Inoguchi T., Maeda Y., Ikeda N., Zheng J., Takei R., Yokomizo H., Hirata E., Sonoda N., Takayanagi R. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism. 2012;61:1422–1434. doi: 10.1016/j.metabol.2012.03.002. [PubMed] [CrossRef] [Google Scholar]

59. Fujita H., Morii T., Fujishima H., Sato T., Shimizu T., Hosoba M., Tsukiyama K., Narita T., Takahashi T., Drucker D.J., et al. The protective roles of GLP-1R signaling in diabetic nephropathy: Possible mechanism and therapeutic potential. Kidney Int. 2014;85:579–589. doi: 10.1038/ki.2013.427. [PubMed] [CrossRef] [Google Scholar]

60. Gutzwiller J.P., Hruz P., Huber A.R., Hamel C., Zehnder C., Drewe J., Gutmann H., Stanga Z., Vogel D., Beglinger C. Glucagon-like peptide-1 is involved in sodium and water homeostasis in humans. Digestion. 2006;73:142–150. doi: 10.1159/000094334. [PubMed] [CrossRef] [Google Scholar]

61. Rieg T., Gerasimova M., Murray F., Masuda T., Tang T., Rose M., Drucker D.J., Vallon V. Natriuretic effect by exendin-4, but not the DPP-4 inhibitor alogliptin, is mediated via the GLP-1 receptor and preserved in obese type 2 diabetic mice. Am. J. Physiol. Renal. Physiol. 2012;303:F963–F971. doi: 10.1152/ajprenal.00259.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Muskiet M.H.A., Tonneijck L., Smits M.M., van Baar M.J.B., Kramer M.H.H., Hoorn E.J., Joles J.A., van Raalte D.H. GLP-1 and the kidney: From physiology to pharmacology and outcomes in diabetes. Nat. Rev. Nephrol. 2017;13:605–628. doi: 10.1038/nrneph.2017.123. [PubMed] [CrossRef] [Google Scholar]

63. Davies M.J., Bain S.C., Atkin S.L., Rossing P., Scott D., Shamkhalova M.S., Bosch-Traberg H., Syrén A., Umpierrez G.E. Efficacy and Safety of Liraglutide Versus Placebo as Add-on to Glucose-Lowering Therapy in Patients with Type 2 Diabetes and Moderate Renal Impairment (LIRA-RENAL): A Randomized Clinical Trial. Diabetes Care. 2016;39:222–230. doi: 10.2337/dc14-2883. [PubMed] [CrossRef] [Google Scholar]

64. Mann J.F.E., Ørsted D.D., Buse J.B. Liraglutide and Renal Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017;377:2197–2198. doi: 10.1056/NEJMoa1616011. [PubMed] [CrossRef] [Google Scholar]

65. Muskiet M.H.A., Tonneijck L., Huang Y., Liu M., Saremi A., Heerspink H.J.L., van Raalte D.H. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: An exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018;6:859–869. doi: 10.1016/S2213-8587(18)30268-7. [PubMed] [CrossRef] [Google Scholar]

66. Tuttle K.R., Lakshmanan M.C., Rayner B., Busch R.S., Zimmermann A.G., Woodward D.B., Botros F.T. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): A multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018;6:605–617. doi: 10.1016/S2213-8587(18)30104-9. [PubMed] [CrossRef] [Google Scholar]

67. De Vos L.C., Hettige T.S., Cooper M.E. New Glucose-Lowering Agents for Diabetic Kidney Disease. Adv. Chronic Kidney Dis. 2018;25:149–157. doi: 10.1053/j.ackd.2018.01.002. [PubMed] [CrossRef] [Google Scholar]

68. Fuhrman D.Y., Schneider M.F., Dell K.M., Blydt-Hansen T.D., Mak R., Saland J.M., Furth S.L., Warady B.A., Moxey-Mims M.M., Schwartz G.J. Albuminuria, Proteinuria, and Renal Disease Progression in Children with CKD. Clin. J. Am. Soc. Nephrol. 2017;12:912–920. doi: 10.2215/CJN.11971116. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Fox C.S., Matsushita K., Woodward M., Bilo H.J., Chalmers J., Heerspink H.J., Lee B.J., Perkins R.M., Rossing P., Sairenchi T., et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: A meta-analysis. Lancet. 2012;380:1662–1673. doi: 10.1016/S0140-6736(12)61350-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Lorenzo V., Saracho R., Zamora J., Rufino M., Torres A. Similar renal decline in diabetic and non-diabetic patients with comparable levels of albuminuria. Nephrol. Dial. Transplant. 2010;25:835–841. doi: 10.1093/ndt/gfp475. [PubMed] [CrossRef] [Google Scholar]

71. Marso S.P., Bain S.C., Consoli A., Eliaschewitz F.G., Jódar E., Leiter L.A., Lingvay I., Rosenstock J., Seufert J., Warren M.L., et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016;375:1834–1844. doi: 10.1056/NEJMoa1607141. [PubMed] [CrossRef] [Google Scholar]

72. Muskiet M.H., Smits M.M., Morsink L.M., Diamant M. The gut-renal axis: Do incretin-based agents confer renoprotection in diabetes? Nat. Rev. Nephrol. 2014;10:88–103. doi: 10.1038/nrneph.2013.272. [PubMed] [CrossRef] [Google Scholar]

73. Panchapakesan U., Pegg K., Gross S., Komala M.G., Mudaliar H., Forbes J., Pollock C., Mather A. Effects of SGLT2 inhibition in human kidney proximal tubular cells—Renoprotection in diabetic nephropathy? PLoS ONE. 2013;8:e54442. doi: 10.1371/journal.pone.0054442. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Katz P.M., Leiter L.A. The Role of the Kidney and SGLT2 Inhibitors in Type 2 Diabetes. Can. J. Diabetes. 2015;39(Suppl. S5):S167–S175. doi: 10.1016/j.jcjd.2015.09.001. [PubMed] [CrossRef] [Google Scholar]

75. Mather A., Pollock C. Glucose handling by the kidney. Kidney Int. Suppl. 2011;79:S1–S6. doi: 10.1038/ki.2010.509. [PubMed] [CrossRef] [Google Scholar]

76. Mather A., Pollock C. Renal glucose transporters: Novel targets for hyperglycemia management. Nat. Rev. Nephrol. 2010;6:307–311. doi: 10.1038/nrneph.2010.38. [PubMed] [CrossRef] [Google Scholar]

77. Abdul-Ghani M.A., DeFronzo R.A., Norton L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans. Diabetes. 2013;62:3324–3328. doi: 10.2337/db13-0604. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Marks J., Carvou N.J., Debnam E.S., Srai S.K., Unwin R.J. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J. Physiol. 2003;553:137–145. doi: 10.1113/jphysiol.2003.046268. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Gilbert R.E., Cooper M.E. The tubulointerstitium in progressive diabetic kidney disease: More than an aftermath of glomerular injury? Kidney Int. 1999;56:1627–1637. doi: 10.1046/j.1523-1755.1999.00721.x. [PubMed] [CrossRef] [Google Scholar]

80. Cherney D.Z., Perkins B.A., Soleymanlou N., Xiao F., Zimpelmann J., Woerle H.J., Johansen O.E., Broedl U.C., von Eynatten M., Burns K.D. Sodium glucose cotransport-2 inhibition and intrarenal RAS activity in people with type 1 diabetes. Kidney Int. 2014;86:1057–1058. doi: 10.1038/ki.2014.246. [PubMed] [CrossRef] [Google Scholar]

81. Vallon V., Richter K., Blantz R.C., Thomson S., Osswald H. Glomerular hyperfiltration in experimental diabetes mellitus: Potential role of tubular reabsorption. J. Am. Soc. Nephrol. 1999;10:2569–2576. [PubMed] [Google Scholar]

82. Kojima N., Williams J.M., Slaughter T.N., Kato S., Takahashi T., Miyata N., Roman R.J. Renoprotective effects of combined SGLT2 and ACE inhibitor therapy in diabetic Dahl S rats. Physiol. Rep. 2015;3:e12436. doi: 10.14814/phy2.12436. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Gallo L.A., Ward M.S., Fotheringham A.K., Zhuang A., Borg D.J., Flemming N.B., Harvie B.M., Kinneally T.L., Yeh S.M., McCarthy D.A., et al. Erratum: Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci. Rep. 2016;6:28124. doi: 10.1038/srep28124. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Johnson D.W., Saunders H.J., Brew B.K., Poronnik P., Cook D.I., Field M.J., Pollock C.A. TGF-beta 1 dissociates human proximal tubule cell growth and Na(+)-H+ exchange activity. Kidney Int. 1998;53:1601–1607. doi: 10.1046/j.1523-1755.1998.00916.x. [PubMed] [CrossRef] [Google Scholar]

85. Panchapakesan U., Pollock C.A., Chen X.M. The effect of high glucose and PPAR-gamma agonists on PPAR-gamma expression and function in HK-2 cells. Am. J. Physiol Renal Physiol. 2004;287:F528–F534. doi: 10.1152/ajprenal.00445.2003. [PubMed] [CrossRef] [Google Scholar]

86. Qi W., Chen X., Holian J., Mreich E., Twigg S., Gilbert R.E., Pollock C.A. Transforming growth factor-beta1 differentially mediates fibronectin and inflammatory cytokine expression in kidney tubular cells. Am. J. Physiol. Renal Physiol. 2006;291:F1070–F1077. doi: 10.1152/ajprenal.00013.2006. [PubMed] [CrossRef] [Google Scholar]

87. Scheen A.J. Evaluating SGLT2 inhibitors for type 2 diabetes: Pharmacokinetic and toxicological considerations. Expert Opin. Drug Metab. Toxicol. 2014;10:647–663. doi: 10.1517/17425255.2014.873788. [PubMed] [CrossRef] [Google Scholar]

88. Scheen A.J. Drug-drug interactions with sodium-glucose cotransporters type 2 (SGLT2) inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes mellitus. Clin. Pharmacokinet. 2014;53:295–304. doi: 10.1007/s40262-013-0128-8. [PubMed] [CrossRef] [Google Scholar]

89. Merovci A., Mari A., Solis-Herrera C., Xiong J., Daniele G., Chavez-Velazquez A., Tripathy D., Urban McCarthy S., Abdul-Ghani M., DeFronzo R.A. Dapagliflozin lowers plasma glucose concentration and improves β-cell function. J. Clin. Endocrinol. Metab. 2015;100:1927–1932. doi: 10.1210/jc.2014-3472. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Del Prato S. Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategies. Diabet. Med. 2009;26:1185–1192. doi: 10.1111/j.1464-5491.2009.02847.x. [PubMed] [CrossRef] [Google Scholar]

91. Wilding J.P., Blonde L., Leiter L.A., Cerdas S., Tong C., Yee J., Meininger G. Efficacy and safety of canagliflozin by baseline HbA1c and known duration of type 2 diabetes mellitus. J. Diabetes Complic. 2015;29:438–444. doi: 10.1016/j.jdiacomp.2014.12.016. [PubMed] [CrossRef] [Google Scholar]

92. Bolinder J., Ljunggren Ö., Johansson L., Wilding J., Langkilde A.M., Sjöström C.D., Sugg J., Parikh S. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes. Metab. 2014;16:159–169. doi: 10.1111/dom.12189. [PubMed] [CrossRef] [Google Scholar]

93. Engeli S., Jordan J. Novel metabolic drugs and blood pressure: Implications for the treatment of obese hypertensive patients? Curr. Hypertens Rep. 2013;15:470–474. doi: 10.1007/s11906-013-0374-z. [PubMed] [CrossRef] [Google Scholar]

94. Johnsson K.M., Ptaszynska A., Schmitz B., Sugg J., Parikh S.J., List J.F. Urinary tract infections in patients with diabetes treated with dapagliflozin. J. Diabetes Complic. 2013;27:473–478. doi: 10.1016/j.jdiacomp.2013.05.004. [PubMed] [CrossRef] [Google Scholar]

95. Elkinson S., Scott L.J. Canagliflozin: First global approval. Drugs. 2013;73:979–988. doi: 10.1007/s40265-013-0064-9. [PubMed] [CrossRef] [Google Scholar]

96. Polidori D., Sha S., Mudaliar S., Ciaraldi T.P., Ghosh A., Vaccaro N., Farrell K., Rothenberg P., Henry R.R. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: Results of a randomized, placebo-controlled study. Diabetes Care. 2013;36:2154–2161. doi: 10.2337/dc12-2391. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Nyirjesy P., Zhao Y., Ways K., Usiskin K. Evaluation of vulvovaginal symptoms and Candida colonization in women with type 2 diabetes mellitus treated with canagliflozin, a sodium glucose co-transporter 2 inhibitor. Curr. Med. Res. Opin. 2012;28:1173–1178. doi: 10.1185/03007995.2012.697053. [PubMed] [CrossRef] [Google Scholar]

98. Scheen A.J. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin. Pharmacokinet. 2014;53:213–225. doi: 10.1007/s40262-013-0126-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Ferrannini E., Muscelli E., Frascerra S., Baldi S., Mari A., Heise T., Broedl U.C., Woerle H.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 2014;124:499–508. doi: 10.1172/JCI72227. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Ferrannini E., Berk A., Hantel S., Pinnetti S., Hach T., Woerle H.J., Broedl U.C. Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: An active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes. Diabetes Care. 2013;36:4015–4021. doi: 10.2337/dc13-0663. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Gerich J.E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: Therapeutic implications. Diabet. Med. 2010;27:136–142. doi: 10.1111/j.1464-5491.2009.02894.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Cherney D.Z., Scholey J.W., Jiang S., Har R., Lai V., Sochett E.B., Reich H.N. The effect of direct renin inhibition alone and in combination with ACE inhibition on endothelial function, arterial stiffness, and renal function in type 1 diabetes. Diabetes Care. 2012;35:2324–2330. doi: 10.2337/dc12-0773. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. De Nicola L., Gabbai F.B., Liberti M.E., Sagliocca A., Conte G., Minutolo R. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: Targeting the renal tubule in diabetes. Am. J. Kidney Dis. 2014;64:16–24. doi: 10.1053/j.ajkd.2014.02.010. [PubMed] [CrossRef] [Google Scholar]

104. Rahmoune H., Thompson P.W., Ward J.M., Smith C.D., Hong G., Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes. 2005;54:3427–3434. doi: 10.2337/diabetes.54.12.3427. [PubMed] [CrossRef] [Google Scholar]

105. Vallon V., Gerasimova M., Rose M.A., Masuda T., Satriano J., Mayoux E., Koepsell H., Thomson S.C., Rieg T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol. 2014;306:F194–F204. doi: 10.1152/ajprenal.00520.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Kojima N., Williams J.M., Takahashi T., Miyata N., Roman R.J. Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DN rats. J. Pharmacol. Exp. Ther. 2013;345:464–472. doi: 10.1124/jpet.113.203869. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Terami N., Ogawa D., Tachibana H., Hatanaka T., Wada J., Nakatsuka A., Eguchi J., Horiguchi C.S., Nishii N., Yamada H., et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS ONE. 2014;9:e100777. doi: 10.1371/journal.pone.0100777. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Lin B., Koibuchi N., Hasegawa Y., Sueta D., Toyama K., Uekawa K., Ma M., Nakagawa T., Kusaka H., Kim-Mitsuyama S. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc. Diabetol. 2014;13:148. doi: 10.1186/s12933-014-0148-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Nagata T., Fukuzawa T., Takeda M., Fukazawa M., Mori T., Nihei T., Honda K., Suzuki Y., Kawabe Y. Tofogliflozin, a novel sodium-glucose co-transporter 2 inhibitor, improves renal and pancreatic function in db/db mice. Br. J. Pharmacol. 2013;170:519–531. doi: 10.1111/bph.12269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Gangadharan Komala M., Gross S., Mudaliar H., Huang C., Pegg K., Mather A., Shen S., Pollock C.A., Panchapakesan U. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice. PLoS ONE. 2014;9:e108994. doi: 10.1371/journal.pone.0108994. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Tabatabai N.M., Sharma M., Blumenthal S.S., Petering D.H. Enhanced expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res. Clin. Pract. 2009;83:e27–e30. doi: 10.1016/j.diabres.2008.11.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Maldonado-Cervantes M.I., Galicia O.G., Moreno-Jaime B., Zapata-Morales J.R., Montoya-Contreras A., Bautista-Perez R., Martinez-Morales F. Autocrine modulation of glucose transporter SGLT2 by IL-6 and TNF-α in LLC-PK(1) cells. J. Physiol. Biochem. 2012;68:411–420. doi: 10.1007/s13105-012-0153-3. [PubMed] [CrossRef] [Google Scholar]

113. Beloto-Silva O., Machado U.F., Oliveira-Souza M. Glucose-induced regulation of NHEs activity and SGLTs expression involves the PKA signaling pathway. J. Membr. Biol. 2011;239:157–165. doi: 10.1007/s00232-010-9334-6. [PubMed] [CrossRef] [Google Scholar]

114. Ghezzi C., Wright E.M. Regulation of the human Na+-dependent glucose cotransporter hSGLT2. Am. J. Physiol. Cell Physiol. 2012;303:C348–C354. doi: 10.1152/ajpcell.00115.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Osorio H., Bautista R., Rios A., Franco M., Santamaría J., Escalante B. Effect of treatment with losartan on salt sensitivity and SGLT2 expression in hypertensive diabetic rats. Diabetes Res. Clin. Pract. 2009;86:e46–e49. doi: 10.1016/j.diabres.2009.09.006. [PubMed] [CrossRef] [Google Scholar]

116. Doblado M., Moley K.H. Facilitative glucose transporter 9, a unique hexose and urate transporter. Am. J. Physiol. Endocrinol. Metab. 2009;297:E831–E835. doi: 10.1152/ajpendo.00296.2009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Cain L., Shankar A., Ducatman A.M., Steenland K. The relationship between serum uric acid and chronic kidney disease among Appalachian adults. Nephrol. Dial. Transplant. 2010;25:3593–3599. doi: 10.1093/ndt/gfq262. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Komala M.G., Panchapakesan U., Pollock C., Mather A. Sodium glucose cotransporter 2 and the diabetic kidney. Curr. Opin. Nephrol. Hypertens. 2013;22:113–119. doi: 10.1097/MNH.0b013e32835a17ae. [PubMed] [CrossRef] [Google Scholar]

119. De Zeeuw D., Remuzzi G., Parving H.H., Keane W.F., Zhang Z., Shahinfar S., Snapinn S., Cooper M.E., Mitch W.E., Brenner B.M. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: Lessons from RENAAL. Kidney Int. 2004;65:2309–2320. doi: 10.1111/j.1523-1755.2004.00653.x. [PubMed] [CrossRef] [Google Scholar]

120. Yale J.F., Bakris G., Cariou B., Yue D., David-Neto E., Xi L., Figueroa K., Wajs E., Usiskin K., Meininger G. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes. Metab. 2013;15:463–473. doi: 10.1111/dom.12090. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Heerspink H.J., Johnsson E., Gause-Nilsson I., Cain V.A., Sjöström C.D. Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin-angiotensin blockers. Diabetes Obes. Metab. 2016;18:590–597. doi: 10.1111/dom.12654. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Chonchol M., Shlipak M.G., Katz R., Sarnak M.J., Newman A.B., Siscovick D.S., Kestenbaum B., Carney J.K., Fried L.F. Relationship of uric acid with progression of kidney disease. Am. J. Kidney Dis. 2007;50:239–247. doi: 10.1053/j.ajkd.2007.05.013. [PubMed] [CrossRef] [Google Scholar]

123. Goicoechea M., de Vinuesa S.G., Verdalles U., Ruiz-Caro C., Ampuero J., Rincón A., Arroyo D., Luño J. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin. J. Am. Soc. Nephrol. 2010;5:1388–1393. doi: 10.2215/CJN.01580210. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Iseki K., Oshiro S., Tozawa M., Iseki C., Ikemiya Y., Takishita S. Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens Res. 2001;24:691–697. doi: 10.1291/hypres.24.691. [PubMed] [CrossRef] [Google Scholar]

125. Hovind P., Rossing P., Johnson R.J., Parving H.H. Serum uric acid as a new player in the development of diabetic nephropathy. J. Ren. Nutr. 2011;21:124–127. doi: 10.1053/j.jrn.2010.10.024. [PubMed] [CrossRef] [Google Scholar]

126. Kang D.H., Nakagawa T., Feng L., Watanabe S., Han L., Mazzali M., Truong L., Harris R., Johnson R.J. A role for uric acid in the progression of renal disease. J. Am. Soc. Nephrol. 2002;13:2888–2897. doi: 10.1097/01.ASN.0000034910.58454.FD. [PubMed] [CrossRef] [Google Scholar]

127. Cefalu W.T., Leiter L.A., Yoon K.H., Arias P., Niskanen L., Xie J., Balis D.A., Canovatchel W., Meininger G. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013;382:941–950. doi: 10.1016/S0140-6736(13)60683-2. [PubMed] [CrossRef] [Google Scholar]

128. Bailey C.J., Gross J.L., Pieters A., Bastien A., List J.F. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: A randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:2223–2233. doi: 10.1016/S0140-6736(10)60407-2. [PubMed] [CrossRef] [Google Scholar]

129. Wilding J.P., Ferrannini E., Fonseca V.A., Wilpshaar W., Dhanjal P., Houzer A. Efficacy and safety of ipragliflozin in patients with type 2 diabetes inadequately controlled on metformin: A dose-finding study. Diabetes Obes. Metab. 2013;15:403–409. doi: 10.1111/dom.12038. [PubMed] [CrossRef] [Google Scholar]

130. Home P. Cardiovascular outcome trials of glucose-lowering medications: An update. Diabetologia. 2019;62:357–369. doi: 10.1007/s00125-018-4801-1. [PubMed] [CrossRef] [Google Scholar]

131. Neal B., Perkovic V., Matthews D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017;377:2099. doi: 10.1056/NEJMoa1611925. [PubMed] [CrossRef] [Google Scholar]

132. Mosenzon O., Wiviott S.D., Cahn A., Rozenberg A., Yanuv I., Goodrich E.L., Murphy S.A., Heerspink H.J.L., Zelniker T.A., Dwyer J.P., et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: An analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7:606–617. doi: 10.1016/S2213-8587(19)30180-9. [PubMed] [CrossRef] [Google Scholar]

133. Neuen B.L., Young T., Heerspink H.J.L., Neal B., Perkovic V., Billot L., Mahaffey K.W., Charytan D.M., Wheeler D.C., Arnott C., et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019;7:845–854. doi: 10.1016/S2213-8587(19)30256-6. [PubMed] [CrossRef] [Google Scholar]

134. Zinman B., Wanner C., Lachin J.M., Fitchett D., Bluhmki E., Hantel S., Mattheus M., Devins T., Johansen O.E., Woerle H.J., et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720. [PubMed] [CrossRef] [Google Scholar]

135. Schernthaner G., Schernthaner-Reiter M.H., Schernthaner G.H. EMPA-REG and Other Cardiovascular Outcome Trials of Glucose-lowering Agents: Implications for Future Treatment Strategies in Type 2 Diabetes Mellitus. Clin. Ther. 2016;38:1288–1298. doi: 10.1016/j.clinthera.2016.04.037. [PubMed] [CrossRef] [Google Scholar]

136. Kalra S., Singh V., Nagrale D. Sodium-Glucose Cotransporter-2 Inhibition and the Glomerulus: A Review. Adv. Ther. 2016;33:1502–1518. doi: 10.1007/s12325-016-0379-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Heerspink H.J.L., Kosiborod M., Inzucchi S.E., Cherney D.Z.I. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018;94:26–39. doi: 10.1016/j.kint.2017.12.027. [PubMed] [CrossRef] [Google Scholar]

138. Molitch M.E., Adler A.I., Flyvbjerg A., Nelson R.G., So W.Y., Wanner C., Kasiske B.L., Wheeler D.C., de Zeeuw D., Mogensen C.E. Diabetic kidney disease: A clinical update from Kidney Disease: Improving Global Outcomes. Kidney Int. 2015;87:20–30. doi: 10.1038/ki.2014.128. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Cherney D.Z.I., Bakris G.L. Novel therapies for diabetic kidney disease. Kidney Int. Suppl. 2018;8:18–25. doi: 10.1016/j.kisu.2017.10.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Bloomgarden Z. The kidney and cardiovascular outcome trials. J. Diabetes. 2018;10:88–89. doi: 10.1111/1753-0407.12616. [PubMed] [CrossRef] [Google Scholar]

141. Yaribeygi H., Atkin S.L., Katsiki N., Sahebkar A. Narrative review of the effects of antidiabetic drugs on albuminuria. J. Cell Physiol. 2019;234:5786–5797. doi: 10.1002/jcp.27503. [PubMed] [CrossRef] [Google Scholar]

142. León Jiménez D., Cherney D.Z.I., Bjornstad P., Guerra L.C., Miramontes González J.P. Antihyperglycemic agents as novel natriuretic therapies in diabetic kidney disease. Am. J. Physiol. Renal Physiol. 2018;315:F1406–F1415. doi: 10.1152/ajprenal.00384.2017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Cosentino F., Grant P.J., Aboyans V., Bailey C.J., Ceriello A., Delgado V., Federici M., Filippatos G., Grobbee D.E., Hansen T.B., et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2019 doi: 10.1093/eurheartj/ehz486. [PubMed] [CrossRef] [Google Scholar]