Specially designed instruction for students with SLD and dyslexia environmental

1. Schumacher J., Hoffmann P., Schmal C., Schulte-Korne G., Nothen M.M. Genetics of dyslexia: The evolving landscape. J. Med. Genet. 2007;44:289–297. doi: 10.1136/jmg.2006.046516. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Mascheretti S., De Luca A., Trezzi V., Peruzzo D., Nordio A., Marino C., Arrigoni F. Neurogenetics of developmental dyslexia: From genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl. Psychiatry. 2017;7:e987. doi: 10.1038/tp.2016.240. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Volume 21 American Psychiatric Association; Arlington, VA, USA: 2013. [Google Scholar]

4. Undheim A.M. Dyslexia and psychosocial factors. A follow-up study of young Norwegian adults with a history of dyslexia in childhood. Nord. J. Psychiatry. 2003;57:221–226. doi: 10.1080/08039480310001391. [PubMed] [CrossRef] [Google Scholar]

5. Zuk J., Dunstan J., Norton E., Yu X., Ozernov-Palchik O., Wang Y., Hogan T.P., Gabrieli J.D.E., Gaab N. Multifactorial pathways facilitate resilience among kindergarteners at risk for dyslexia: A longitudinal behavioral and neuroimaging study. Dev. Sci. 2021;24:e12983. doi: 10.1111/desc.12983. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Peterson R.L., Pennington B.F. Developmental dyslexia. Annu. Rev. Clin. Psychol. 2015;11:283–307. doi: 10.1146/annurev-clinpsy-032814-112842. [PubMed] [CrossRef] [Google Scholar]

7. Tanaka H., Black J.M., Hulme C., Stanley L.M., Kesler S.R., Whitfield-Gabrieli S., Reiss A.L., Gabrieli J.D., Hoeft F. The brain basis of the phonological deficit in dyslexia is independent of IQ. Psychol. Sci. 2011;22:1442–1451. doi: 10.1177/0956797611419521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Protopapas A., Parrila R. Dyslexia: Still Not a Neurodevelopmental Disorder. Brain Sci. 2019;9:9. doi: 10.3390/brainsci9010009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Plomin R., Kovas Y. Generalist genes and learning disabilities. Psychol. Bull. 2005;131:592–617. doi: 10.1037/0033-2909.131.4.592. [PubMed] [CrossRef] [Google Scholar]

10. Daskalakis N.P., Bagot R.C., Parker K.J., Vinkers C.H., de Kloet E.R. The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology. 2013;38:1858–1873. doi: 10.1016/j.psyneuen.2013.06.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Undheim A.M., Wichstrøm L., Sund A.M. Emotional and Behavioral Problems Among School Adolescents With and Without Reading Difficulties as Measured by the Youth Self-Report: A One-Year Follow-Up Study. Scand. J. Educ. Res. 2011;55:291–305. doi: 10.1080/00313831.2011.576879. [CrossRef] [Google Scholar]

12. Terras M.M., Thompson L.C., Minnis H. Dyslexia and psycho-social functioning: An exploratory study of the role of self-esteem and understanding. Dyslexia. 2009;15:304–327. doi: 10.1002/dys.386. [PubMed] [CrossRef] [Google Scholar]

13. Zakopoulou V., Mavreas V., Christodoulides P., Lavidas A., Fili E., Georgiou G., Dimakopoulos G., Vergou M. Specific learning difficulties: A retrospective study of their co morbidity and continuity as early indicators of mental disorders. Res. Dev. Disabil. 2014;35:3496–3507. doi: 10.1016/j.ridd.2014.07.040. [PubMed] [CrossRef] [Google Scholar]

14. Gialluisi A., Andlauer T.F., Mirza-Schreiber N., Moll K., Becker J., Hoffmann P., Ludwig K.U., Czamara D., St Pourcain B., Honbolygó F. Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Mol. Psychiatry. 2020:1–14. doi: 10.1038/s41380-020-00898-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Kershner J.R. An Evolutionary Perspective of Dyslexia, Stress, and Brain Network Homeostasis. Front. Hum. Neurosci. 2020;14:575546. doi: 10.3389/fnhum.2020.575546. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Guidi L.G., Velayos-Baeza A., Martinez-Garay I., Monaco A.P., Paracchini S., Bishop D.V.M., Molnar Z. The neuronal migration hypothesis of dyslexia: A critical evaluation 30 years on. Eur. J. Neurosci. 2018;48:3212–3233. doi: 10.1111/ejn.14149. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Peters L., Ansari D. Are specific learning disorders truly specific, and are they disorders? Trends Neurosci. Educ. 2019;17:100115. doi: 10.1016/j.tine.2019.100115. [PubMed] [CrossRef] [Google Scholar]

18. van Bergen E., van der Leij A., de Jong P.F. The intergenerational multiple deficit model and the case of dyslexia. Front. Hum. Neurosci. 2014;8:346. doi: 10.3389/fnhum.2014.00346. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Pennington B.F. From single to multiple deficit models of developmental disorders. Cognition. 2006;101:385–413. doi: 10.1016/j.cognition.2006.04.008. [PubMed] [CrossRef] [Google Scholar]

20. Gialluisi A., Andlauer T.F.M., Mirza-Schreiber N., Moll K., Becker J., Hoffmann P., Ludwig K.U., Czamara D., St Pourcain B., Brandler W., et al. Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Transl. Psychiatry. 2019;9:77. doi: 10.1038/s41398-019-0402-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Smith S.D. Approach to epigenetic analysis in language disorders. J. Neurodev. Disord. 2011;3:356–364. doi: 10.1007/s11689-011-9099-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Cho K., Frijters J.C., Zhang H., Miller L.L., Gruen J.R. Prenatal exposure to nicotine and impaired reading performance. J. Pediatr. 2013;162:713–718. doi: 10.1016/j.jpeds.2012.09.041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Romeo R.R., Christodoulou J.A., Halverson K.K., Murtagh J., Cyr A.B., Schimmel C., Chang P., Hook P.E., Gabrieli J.D.E. Socioeconomic Status and Reading Disability: Neuroanatomy and Plasticity in Response to Intervention. Cereb. Cortex. 2018;28:2297–2312. doi: 10.1093/cercor/bhx131. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Ozernov-Palchik O., Norton E.S., Wang Y., Beach S.D., Zuk J., Wolf M., Gabrieli J.D.E., Gaab N. The relationship between socioeconomic status and white matter microstructure in pre-reading children: A longitudinal investigation. Hum. Brain Mapp. 2019;40:741–754. doi: 10.1002/hbm.24407. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Mascheretti S., Bureau A., Battaglia M., Simone D., Quadrelli E., Croteau J., Cellino M.R., Giorda R., Beri S., Maziade M., et al. An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes. Genes Brain Behav. 2013;12:47–55. doi: 10.1111/gbb.12000. [PubMed] [CrossRef] [Google Scholar]

26. Kershner J.R. Neurobiological systems in dyslexia. Trends Neurosci. Educ. 2019;14:11–24. doi: 10.1016/j.tine.2018.12.001. [PubMed] [CrossRef] [Google Scholar]

27. D’Souza S., Backhouse-Smith A., Thompson J.M., Slykerman R., Marlow G., Wall C., Murphy R., Ferguson L.R., Mitchell E.A., Waldie K.E. Associations Between the KIAA0319 Dyslexia Susceptibility Gene Variants, Antenatal Maternal Stress, and Reading Ability in a Longitudinal Birth Cohort. Dyslexia. 2016;22:379–393. doi: 10.1002/dys.1534. [PubMed] [CrossRef] [Google Scholar]

28. Bishop D.V. The interface between genetics and psychology: Lessons from developmental dyslexia. Proc. R. Soc. B Biol. Sci. 2015;282:20143139. doi: 10.1098/rspb.2014.3139. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Huang Y., He M., Li A., Lin Y., Zhang X., Wu K. Personality, Behavior Characteristics, and Life Quality Impact of Children with Dyslexia. Int J Environ Res Public Health. 2020;17:1415. doi: 10.3390/ijerph27041415. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Moriano-Gutierrez A., Colomer-Revuelta J., Sanjuan J., Carot-Sierra J.M. [Environmental and genetic variables related with alterations in language acquisition in early childhood] Rev Neurol. 2017;64:31–37. [PubMed] [Google Scholar]

31. Becker N., Vasconcelos M., Oliveira V., Santos F.C.D., Bizarro L., Almeida R.M.M., Salles J.F., Carvalho M.R.S. Genetic and environmental risk factors for developmental dyslexia in children: Systematic review of the last decade. Dev Neuropsychol. 2017;42:423–445. doi: 10.1080/87565641.2017.1374960. [PubMed] [CrossRef] [Google Scholar]

32. Duncan G.J., Magnuson K. Socioeconomic status and cognitive functioning: moving from correlation to causation. Wiley Interdiscip Rev Cogn Sci. 2012;3:377–386. doi: 10.1002/wcs.1176. [PubMed] [CrossRef] [Google Scholar]

33. Hair N.L., Hanson J.L., Wolfe B.L., Pollak S.D. Association of Child Poverty, Brain Development, and Academic Achievement. JAMA Pediatr. 2015;169:822–829. doi: 10.1001/jamapediatrics.2015.1475. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Dilnot J., Hamilton L., Maughan B., Snowling M.J. Child and environmental risk factors predicting readiness for learning in children at high risk of dyslexia. Dev Psychopathol. 2017;29:235–244. doi: 10.1017/S0954579416000134. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Grigorenko E.L. Developmental dyslexia: An update on genes, brains, and environments. J. Child. Psychol. Psychiatry. 2001;42:91–125. doi: 10.1111/1469-7610.00704. [PubMed] [CrossRef] [Google Scholar]

36. Hay I., Hynes K.L., Burgess J.R. Mild-to-Moderate Gestational Iodine Deficiency Processing Disorder. Nutrients. 2019;11:1974. doi: 10.3390/nu11091974. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Rash B.G., Micali N., Huttner A.J., Morozov Y.M., Horvath T.L., Rakic P. Metabolic regulation and glucose sensitivity of cortical radial glial cells. Proc. Natl. Acad. Sci. USA. 2018;115:10142–10147. doi: 10.1073/pnas.1808066115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Walsh K., McCormack C.A., Webster R., Pinto A., Lee S., Feng T., Krakovsky H.S., O’Grady S.M., Tycko B., Champagne F.A., et al. Maternal prenatal stress phenotypes associate with fetal neurodevelopment and birth outcomes. Proc. Natl. Acad. Sci. USA. 2019;116:23996–24005. doi: 10.1073/pnas.1905890116. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Pennington B.F., Bishop D.V. Relations among speech, language, and reading disorders. Annu. Rev. Psychol. 2009;60:283–306. doi: 10.1146/annurev.psych.60.110707.163548. [PubMed] [CrossRef] [Google Scholar]

40. Becker S.P., Leopold D.R., Burns G.L., Jarrett M.A., Langberg J.M., Marshall S.A., McBurnett K., Waschbusch D.A., Willcutt E.G. The Internal, External, and Diagnostic Validity of Sluggish Cognitive Tempo: A Meta-Analysis and Critical Review. J. Am. Acad. Child. Adolesc. Psychiatry. 2016;55:163–178. doi: 10.1016/j.jaac.2015.12.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Galaburda A.M. Developmental dyslexia: A multilevel syndrome. Dyslexia. 1999;5:183–191. doi: 10.1002/(SICI)1099-0909(199912)5:4<183::AID-DYS147>3.0.CO;2-C. [CrossRef] [Google Scholar]

42. Peterson R.L., Pennington B.F. Developmental dyslexia. Lancet. 2012;379:1997–2007. doi: 10.1016/S0140-6736(12)60198-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Raskind W., Peter B., Richards T., Eckert M., Berninger V. The Genetics of Reading Disabilities: From Phenotypes to Candidate Genes. Front. Psychol. 2013;3:601. doi: 10.3389/fpsyg.2012.00601. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Mascheretti S., Bureau A., Trezzi V., Giorda R., Marino C. An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia. Hum. Genet. 2015;134:749–760. doi: 10.1007/s00439-015-1555-4. [PubMed] [CrossRef] [Google Scholar]

45. Berretz G., Wolf O.T., Gunturkun O., Ocklenburg S. Atypical lateralization in neurodevelopmental and psychiatric disorders: What is the role of stress? Cortex. 2020;125:215–232. doi: 10.1016/j.cortex.2019.12.019. [PubMed] [CrossRef] [Google Scholar]

46. O’Donnell K.J., Meaney M.J. Fetal Origins of Mental Health: The Developmental Origins of Health and Disease Hypothesis. Am. J. Psychiatry. 2017;174:319–328. doi: 10.1176/appi.ajp.2016.16020138. [PubMed] [CrossRef] [Google Scholar]

47. Burga A., Lehner B. Beyond genotype to phenotype: Why the phenotype of an individual cannot always be predicted from their genome sequence and the environment that they experience. FEBS J. 2012;279:3765–3775. doi: 10.1111/j.1742-4658.2012.08810.x. [PubMed] [CrossRef] [Google Scholar]

48. Mai S., Braun J., Probst V., Kammer T., Pollatos O. Changes in emotional processing following interoceptive network stimulation with rTMS. Neuroscience. 2019;406:405–419. doi: 10.1016/j.neuroscience.2019.03.014. [PubMed] [CrossRef] [Google Scholar]

49. Zakopoulou V., Vlaikou A.M., Darsinou M., Papadopoulou Z., Theodoridou D., Papageorgiou K., Alexiou G.A., Bougias H., Siafaka V., Zoccolotti P., et al. Linking Early Life Hypothalamic-Pituitary-Adrenal Axis Functioning, Brain Asymmetries, and Personality Traits in Dyslexia: An Informative Case Study. Front. Hum. Neurosci. 2019;13:327. doi: 10.3389/fnhum.2019.00327. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Schmitz J., Gunturkun O., Ocklenburg S. Building an Asymmetrical Brain: The Molecular Perspective. Front. Psychol. 2019;10:982. doi: 10.3389/fpsyg.2019.00982. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Elbau I.G., Cruceanu C., Binder E.B. Genetics of Resilience: Gene-by-Environment Interaction Studies as a Tool to Dissect Mechanisms of Resilience. Biol. Psychiatry. 2019;86:433–442. doi: 10.1016/j.biopsych.2019.04.025. [PubMed] [CrossRef] [Google Scholar]

52. DeMorrow S. Role of the Hypothalamic-Pituitary-Adrenal Axis in Health and Disease. Int. J. Mol. Sci. 2018;19:986. doi: 10.3390/ijms19040986. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Papadopoulou Z., Vlaikou A.M., Theodoridou D., Komini C., Chalkiadaki G., Vafeiadi M., Margetaki K., Trangas T., Turck C.W., Syrrou M., et al. Unraveling the Serum Metabolomic Profile of Post-partum Depression. Front. Neurosci. 2019;13:833. doi: 10.3389/fnins.2019.00833. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Papadopoulou Z., Vlaikou A.M., Theodoridou D., Markopoulos G.S., Tsoni K., Agakidou E., Drosou-Agakidou V., Turck C.W., Filiou M.D., Syrrou M. Stressful Newborn Memories: Pre-Conceptual, In Utero, and Postnatal Events. Front. Psychiatry. 2019;10:220. doi: 10.3389/fpsyt.2019.00220. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. McEwen B.S., Gianaros P.J. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med. 2011;62:431–445. doi: 10.1146/annurev-med-052209-100430. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. McGowan P.O., Matthews S.G. Prenatal Stress, Glucocorticoids, and Developmental Programming of the Stress Response. Endocrinology. 2018;159:69–82. doi: 10.1210/en.2017-00896. [PubMed] [CrossRef] [Google Scholar]

57. Espin L., Garcia I., Del Pino Sanchez M., Roman F., Salvador A. Effects of psychosocial stress on the hormonal and affective response in children with dyslexia. Trends Neurosci. Educ. 2019;15:1–9. doi: 10.1016/j.tine.2019.03.001. [PubMed] [CrossRef] [Google Scholar]

58. Gomes F.V., Zhu X., Grace A.A. Stress during critical periods of development and risk for schizophrenia. Schizophr. Res. 2019;213:107–113. doi: 10.1016/j.schres.2019.01.030. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Bale T.L. Sex differences in prenatal epigenetic programming of stress pathways. Stress. 2011;14:348–356. doi: 10.3109/10253890.2011.586447. [PubMed] [CrossRef] [Google Scholar]

60. Kershner J.R. Dyslexia as an adaptation to cortico-limbic stress system reactivity. Neurobiol. Stress. 2020;12:100223. doi: 10.1016/j.ynstr.2020.100223. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Haft S.L., Myers C.A., Hoeft F. Socio-Emotional and Cognitive Resilience in Children with Reading Disabilities. Curr. Opin. Behav. Sci. 2016;10:133–141. doi: 10.1016/j.cobeha.2016.06.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Zoccolotti P., de Jong P.F., Spinelli D. Editorial: Understanding Developmental Dyslexia: Linking Perceptual and Cognitive Deficits to Reading Processes. Front. Hum. Neurosci. 2016;10:140. doi: 10.3389/fnhum.2016.00140. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Tarabia E., Abu-Rabia S. Social Competency, Sense of Loneliness and Self-Image among Reading Disabled (RD) Arab Adolescents. Creat. Educ. 2016;7:1292. doi: 10.4236/ce.2016.79135. [CrossRef] [Google Scholar]

64. Zakopoulou V., Pashou T., Tzavelas P., Christodoulides P., Anna M., Iliana K. Learning difficulties: A retrospective study of their co morbidity and continuity as indicators of adult criminal behaviour in 18-70-year-old prisoners. Res. Dev. Disabil. 2013;34:3660–3671. doi: 10.1016/j.ridd.2013.08.033. [PubMed] [CrossRef] [Google Scholar]

65. Sorrenti L., Spadaro L., Mafodda A.V., Scopelliti G., Orecchio S., Filippello P. The predicting role of school Learned helplessness in internalizing and externalizing problems. An exploratory study in students with Specific Learning Disorder. Mediterr. J. Clin. Psychol. 2019;7:1–14. [Google Scholar]

66. Rouse H.L., Fantuzzo J.W. Validity of the Dynamic Indicators for Basic Early Literacy Skills as an indicator of early literacy for urban kindergarten children. School Psychol. Rev. 2006;35:341–355. doi: 10.1080/02796015.2006.12087971. [CrossRef] [Google Scholar]

67. Oehler-Stinnett J., Boykin C. Convergent, discriminant, and predictive validity of the Teacher Rating of Academic Achievement Motivation (TRAAM) with the ACTeRs-TF and the BASC-TRS. J. Psychoeduc. Assess. 2001;19:4–18. doi: 10.1177/073428290101900101. [CrossRef] [Google Scholar]

68. Duncan G.J., Dowsett C.J., Claessens A., Magnuson K., Huston A.C., Klebanov P., Pagani L.S., Feinstein L., Engel M., Brooks-Gunn J. School readiness and later achievement. Dev. Psychol. 2007;43:1428. doi: 10.1037/0012-1649.43.6.1428. [PubMed] [CrossRef] [Google Scholar]

69. Dobbs J., Doctoroff G.L., Fisher P.H., Arnold D.H. The association between preschool children’s socio-emotional functioning and their mathematical skills. J. Appl. Dev. Psychol. 2006;27:97–108. doi: 10.1016/j.appdev.2005.12.008. [CrossRef] [Google Scholar]

70. Alexander-Passe N. The sources and manifestations of stress amongst school-aged dyslexics, compared with sibling controls. Dyslexia. 2008;14:291–313. doi: 10.1002/dys.351. [PubMed] [CrossRef] [Google Scholar]

71. Taj R.A., Malik M. Conclusive study to uncover the attributors for success and failure of learning disabled children. Eur. J. Soc. Sci. 2010;16:590–592. [Google Scholar]

72. Gunnar M.R., Talge N.M., Herrera A. Stressor paradigms in developmental studies: What does and does not work to produce mean increases in salivary cortisol. Psychoneuroendocrinology. 2009;34:953–967. doi: 10.1016/j.psyneuen.2009.02.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Agorastos A., Nicolaides N.C., Bozikas V.P., Chrousos G.P., Pervanidou P. Multilevel Interactions of Stress and Circadian System: Implications for Traumatic Stress. Front. Psychiatry. 2019;10:1003. doi: 10.3389/fpsyt.2019.01003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Tsigos C., Kyrou I., Kassi E., Chrousos G.P. Stress: Endocrine Physiology and Pathophysiology. In: Feingold K.R., Anawalt B., Boyce A., Chrousos G., de Herder W.W., Dungan K., Grossman A., Hershman J.M., Hofland J., Kaltsas G., et al., editors. Endotext. MDText.com, Inc.; South Dartmouth, MA, USA: 2000. [Google Scholar]

75. Tsigos C., Chrousos G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002;53:865–871. doi: 10.1016/S0022-3999(02)00429-4. [PubMed] [CrossRef] [Google Scholar]

76. Gunnar M.R., Donzella B. Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology. 2002;27:199–220. doi: 10.1016/S0306-4530(01)00045-2. [PubMed] [CrossRef] [Google Scholar]

78. Gardner K.L., Hale M.W., Lightman S.L., Plotsky P.M., Lowry C.A. Adverse early life experience and social stress during adulthood interact to increase serotonin transporter mRNA expression. Brain Res. 2009;1305:47–63. doi: 10.1016/j.brainres.2009.09.065. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Vogel S., Schwabe L. Learning and memory under stress: Implications for the classroom. NPJ Sci. Learn. 2016;1:16011. doi: 10.1038/npjscilearn.2016.11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. van Bodegom M., Homberg J.R., Henckens M. Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure. Front. Cell Neurosci. 2017;11:87. doi: 10.3389/fncel.2017.00087. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. FeldmanHall O., Glimcher P., Baker A.L., Collaboration N.P., Phelps E.A. The Functional Roles of the Amygdala and Prefrontal Cortex in Processing Uncertainty. J. Cogn. Neurosci. 2019;31:1742–1754. doi: 10.1162/jocn_a_01443. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Jiménez-Bravo M., Marrero V., Benítez-Burraco A. An oscillopathic approach to developmental dyslexia: From genes to speech processing. Behav. Brain Res. 2017;329:84–95. doi: 10.1016/j.bbr.2017.03.048. [PubMed] [CrossRef] [Google Scholar]

83. Lamb Y.N., Thompson J.M., Murphy R., Wall C., Kirk I.J., Morgan A.R., Ferguson L.R., Mitchell E.A., Waldie K.E., ABC Study Group Perceived stress during pregnancy and the catechol-O-methyltransferase (COMT) rs165599 polymorphism impacts on childhood IQ. Cognition. 2014;132:461–470. doi: 10.1016/j.cognition.2014.05.009. [PubMed] [CrossRef] [Google Scholar]

84. Elzinga B.M., Roelofs K. Cortisol-induced impairments of working memory require acute sympathetic activation. Behav. Neurosci. 2005;119:98–103. doi: 10.1037/0735-7044.119.1.98. [PubMed] [CrossRef] [Google Scholar]

85. Roozendaal B., McEwen B.S., Chattarji S. Stress, memory and the amygdala. Nat. Rev. Neurosci. 2009;10:423–433. doi: 10.1038/nrn2651. [PubMed] [CrossRef] [Google Scholar]

86. Gudsnuk K., Champagne F.A. Epigenetic influence of stress and the social environment. ILAR J. 2012;53:279–288. doi: 10.1093/ilar.53.3-4.279. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. McEwen B.S., Nasca C., Gray J.D. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology. 2016;41:3–23. doi: 10.1038/npp.2015.171. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Huang Y., Xu C., He M., Huang W., Wu K. Saliva cortisol, melatonin levels and circadian rhythm alterations in Chinese primary school children with dyslexia. Medicine (Baltimore) 2020;99:e19098. doi: 10.1097/MD.0000000000019098. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Menezes J., Souto das Neves B.H., Goncalves R., Benetti F., Mello-Carpes P.B. Maternal deprivation impairs memory and cognitive flexibility, effect that is avoided by environmental enrichment. Behav. Brain Res. 2020;381:112468. doi: 10.1016/j.bbr.2020.112468. [PubMed] [CrossRef] [Google Scholar]

90. Cowansage K.K., LeDoux J.E., Monfils M.H. Brain-derived neurotrophic factor: A dynamic gatekeeper of neural plasticity. Curr. Mol. Pharmacol. 2010;3:12–29. doi: 10.2174/1874467211003010012. [PubMed] [CrossRef] [Google Scholar]

91. Rattiner L.M., Davis M., Ressler K.J. Brain-derived neurotrophic factor in amygdala-dependent learning. Neuroscientist. 2005;11:323–333. doi: 10.1177/1073858404272255. [PubMed] [CrossRef] [Google Scholar]

92. Karten Y.J., Olariu A., Cameron H.A. Stress in early life inhibits neurogenesis in adulthood. Trends Neurosci. 2005;28:171–172. doi: 10.1016/j.tins.2005.01.009. [PubMed] [CrossRef] [Google Scholar]

93. Cavalli G., Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–499. doi: 10.1038/s41586-019-1411-0. [PubMed] [CrossRef] [Google Scholar]

94. Zhang L., Lu Q., Chang C. Epigenetics in Health and Disease. Adv. Exp. Med. Biol. 2020;1253:3–55. doi: 10.1007/978-981-15-3449-2_1. [PubMed] [CrossRef] [Google Scholar]

95. Heindel J.J., Vandenberg L.N. Developmental origins of health and disease: A paradigm for understanding disease cause and prevention. Curr. Opin. Pediatr. 2015;27:248–253. doi: 10.1097/MOP.0000000000000191. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Thomson M.E. Developmental Dyslexia: Studies in Disorders of Communication. Whurr; London, UK: 1990. [Google Scholar]

97. Boyce W.T., Ellis B.J. Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Dev. Psychopathol. 2005;17:271–301. doi: 10.1017/S0954579405050145. [PubMed] [CrossRef] [Google Scholar]

98. Carrion V.G., Weems C.F., Reiss A.L. Stress predicts brain changes in children: A pilot longitudinal study on youth stress, posttraumatic stress disorder, and the hippocampus. Pediatrics. 2007;119:509–516. doi: 10.1542/peds.2006-2028. [PubMed] [CrossRef] [Google Scholar]

99. De Bellis M.D., Kuchibhatla M. Cerebellar volumes in pediatric maltreatment-related posttraumatic stress disorder. Biol. Psychiatry. 2006;60:697–703. doi: 10.1016/j.biopsych.2006.04.035. [PubMed] [CrossRef] [Google Scholar]

How does environment affect dyslexia?

Environmental and psychosocial stress during critical developmental periods could modulate gene expression via epigenetic modifications, as has been observed in neurodevelopmental disorders and putatively in learning deficits and dyslexia [5,58,81,83,86].

What type of instruction is best for students with dyslexia?

Answer: Students with dyslexia should be placed in a classroom that is structured for multisensory, small group instruction. Most classrooms engage students through sight and/or sound. Information is presented in written and/or spoken form.

What activities are good for dyslexia?

Guided Reading Activities for Children with Dyslexia.
Letter Art. Students with dyslexia often benefit from visual aides while learning to read and recognize letters. ... .
Storytime Rhymes [3] ... .
Building Words with Magnets [9] ... .
Phonemic Awareness Name Game [1] ... .
Online Reading Activities..

Is dyslexia genetic or environmental?

Is dyslexia hereditary? Dyslexia is regarded as a neurobiological condition that is genetic in origin. This means that individuals can inherit this condition from a parent and it affects the performance of the neurological system (specifically, the parts of the brain responsible for learning to read).

Chủ đề