What is the most common type of shock seen in infants and children Group of answer choices?

1. Levy B, Bastien O, Benjelid K, Cariou A, Chouihed T, Combes A, et al. Experts’ recommendations for the management of adult patients with cardiogenic shock. Ann Intensive Care. 2015;5(1):52. doi: 10.1186/s13613-015-0094-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Levy B, Bastien O, Karim B, Cariou A, Chouihed T, Combes A, et al. Erratum to: experts’ recommendations for the management of adult patients with cardiogenic shock. Ann Intensive Care. 2015;5(1):26. doi: 10.1186/s13613-015-0063-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Fisher JD, Nelson DG, Beyersdorf H, Satkowiak LJ. Clinical spectrum of shock in the pediatric emergency department. Pediatr Emerg Care. 2010;26(9):622–625. doi: 10.1097/PEC.0b013e3181ef04b9. [PubMed] [CrossRef] [Google Scholar]

4. Singh D, Chopra A, Pooni PA, Bhatia RC. A clinical profile of shock in children in Punjab, India. Indian Pediatr. 2006;43(7):619–623. [PubMed] [Google Scholar]

5. Rossano JW, Kim JJ, Decker JA, Price JF, Zafar F, Graves DE, et al. Prevalence, morbidity, and mortality of heart failure-related hospitalizations in children in the United States: a population-based study. J Card Fail. 2012;18(6):459–470. doi: 10.1016/j.cardfail.2012.03.001. [PubMed] [CrossRef] [Google Scholar]

6. Webster G, Zhang J, Rosenthal D. Comparison of the epidemiology and co-morbidities of heart failure in the pediatric and adult populations: a retrospective, cross-sectional study. BMC Cardiovasc Disord. 2006;6:23. doi: 10.1186/1471-2261-6-23. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Andrews RE, Fenton MJ, Ridout DA, Burch M. New-onset heart failure due to heart muscle disease in childhood: a prospective study in the United kingdom and Ireland. Circulation. 2008;117(1):79–84. doi: 10.1161/CIRCULATIONAHA.106.671735. [PubMed] [CrossRef] [Google Scholar]

8. Massin MM, Astadicko I, Dessy H. Epidemiology of heart failure in a tertiary pediatric center. Clin Cardiol. 2008;31(8):388–391. doi: 10.1002/clc.20262. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Saji T, Matsuura H, Hasegawa K, Nishikawa T, Yamamoto E, Ohki H, et al. Comparison of the clinical presentation, treatment, and outcome of fulminant and acute myocarditis in children. Circ J. 2012;76(5):1222–1228. doi: 10.1253/circj.CJ-11-1032. [PubMed] [CrossRef] [Google Scholar]

10. Sommers C, Nagel BH, Neudorf U, Schmaltz AA. Congestive heart failure in childhood. An epidemiologic study. Herz. 2005;30(7):652–662. doi: 10.1007/s00059-005-2596-6. [PubMed] [CrossRef] [Google Scholar]

11. Biarent D, Bingham R, Eich C, Lopez-Herce J, Maconochie I, Rodriguez-Nunez A, et al. European resuscitation council guidelines for resuscitation 2010 section 6. Paediatric life support. Resuscitation. 2010;81(10):1364–1388. doi: 10.1016/j.resuscitation.2010.08.012. [PubMed] [CrossRef] [Google Scholar]

12. Chaturvedi V, Saxena A. Heart failure in children: clinical aspect and management. Indian J Pediatr. 2009;76(2):195–205. doi: 10.1007/s12098-009-0050-0. [PubMed] [CrossRef] [Google Scholar]

13. Kantor PF, Lougheed J, Dancea A, McGillion M, Barbosa N, Chan C, et al. Presentation, diagnosis, and medical management of heart failure in children: canadian cardiovascular society guidelines. Can J Cardiol. 2013;29(12):1535–1552. doi: 10.1016/j.cjca.2013.08.008. [PubMed] [CrossRef] [Google Scholar]

14. Wilkinson JD, Landy DC, Colan SD, Towbin JA, Sleeper LA, Orav EJ, et al. The pediatric cardiomyopathy registry and heart failure: key results from the first 15 years. Heart Fail Clin. 2010;6(4):401–13, vii. [PMC free article] [PubMed]

15. Price JF, Mott AR, Dickerson HA, Jefferies JL, Nelson DP, Chang AC, et al. Worsening renal function in children hospitalized with decompensated heart failure: evidence for a pediatric cardiorenal syndrome? Pediatr Crit Care Med. 2008;9(3):279–284. doi: 10.1097/PCC.0b013e31816c6ed1. [PubMed] [CrossRef] [Google Scholar]

16. James N, Smith M. Treatment of heart failure in children. Curr Paediatr. 2005;15(7):539–548. doi: 10.1016/j.cupe.2005.08.003. [CrossRef] [Google Scholar]

17. Rosenthal D, Chrisant MR, Edens E, Mahony L, Canter C, Colan S, et al. International Society for Heart and Lung Transplantation: practice guidelines for management of heart failure in children. J Heart Lung Transplant. 2004;23(12):1313–1333. doi: 10.1016/j.healun.2004.03.018. [PubMed] [CrossRef] [Google Scholar]

18. Sandroni C, Nolan J. ERC 2010 guidelines for adult and pediatric resuscitation: summary of major changes. Minerva Anestesiol. 2011;77(2):220–226. [PubMed] [Google Scholar]

19. Carcillo JA, Kuch BA, Han YY, Day S, Greenwald BM, McCloskey KA, et al. Mortality and functional morbidity after use of PALS/APLS by community physicians. Pediatrics. 2009;124(2):500–508. doi: 10.1542/peds.2008-1967. [PubMed] [CrossRef] [Google Scholar]

20. Patterson MD, Boenning DA, Klein BL, Fuchs S, Smith KM, Hegenbarth MA, et al. The use of high-dose epinephrine for patients with out-of-hospital cardiopulmonary arrest refractory to prehospital interventions. Pediatr Emerg Care. 2005;21(4):227–237. doi: 10.1097/01.pec.0000161468.12218.02. [PubMed] [CrossRef] [Google Scholar]

21. Perondi MB, Reis AG, Paiva EF, Nadkarni VM, Berg RA. A comparison of high-dose and standard-dose epinephrine in children with cardiac arrest. N Engl J Med. 2004;350(17):1722–1730. doi: 10.1056/NEJMoa032440. [PubMed] [CrossRef] [Google Scholar]

22. de Oliveira CF, de Oliveira DS, Gottschald AF, Moura JD, Costa GA, Ventura AC, et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Med. 2008;34(6):1065–1075. doi: 10.1007/s00134-008-1085-9. [PubMed] [CrossRef] [Google Scholar]

23. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–1377. doi: 10.1056/NEJMoa010307. [PubMed] [CrossRef] [Google Scholar]

24. Myburgh J, Finfer S. Causes of death after fluid bolus resuscitation: new insights from FEAST. BMC Med. 2013;11:67. [PMC free article] [PubMed] [Google Scholar]

25. Mahle WT, Cuadrado AR, Kirshbom PM, Kanter KR, Simsic JM. Nesiritide in infants and children with congestive heart failure. Pediatr Crit Care Med. 2005;6(5):543–546. doi: 10.1097/01.PCC.0000164634.58297.9A. [PubMed] [CrossRef] [Google Scholar]

26. Jefferies JL, Price JF, Denfield SW, Chang AC, Dreyer WJ, McMahon CJ, et al. Safety and efficacy of nesiritide in pediatric heart failure. J Card Fail. 2007;13(7):541–548. doi: 10.1016/j.cardfail.2007.04.005. [PubMed] [CrossRef] [Google Scholar]

27. Regen RB, Gonzalez A, Zawodniak K, Leonard D, Quigley R, Barnes AP, et al. Tolvaptan increases serum sodium in pediatric patients with heart failure. Pediatr Cardiol. 2013;34(6):1463–1468. doi: 10.1007/s00246-013-0671-y. [PubMed] [CrossRef] [Google Scholar]

28. Strigl S, Beroukhim R, Valente AM, Annese D, Harrington JS, Geva T, et al. Feasibility of dobutamine stress cardiovascular magnetic resonance imaging in children. J Magn Reson Imaging. 2009;29(2):313–319. doi: 10.1002/jmri.21639. [PubMed] [CrossRef] [Google Scholar]

29. Kwapisz MM, Neuhauser C, Scholz S, Welters ID, Lohr T, Koch T, et al. Hemodynamic effects of dobutamine and dopexamine after cardiopulmonary bypass in pediatric cardiac surgery. Paediatr Anaesth. 2009;19(9):862–871. doi: 10.1111/j.1460-9592.2009.03101.x. [PubMed] [CrossRef] [Google Scholar]

30. Razavi RS, Baker A, Qureshi SA, Rosenthal E, Marsh MJ, Leech SC, et al. Hemodynamic response to continuous infusion of dobutamine in Alagille’s syndrome. Transplantation. 2001;72(5):823–828. doi: 10.1097/00007890-200109150-00014. [PubMed] [CrossRef] [Google Scholar]

31. Booker PD, Evans C, Franks R. Comparison of the haemodynamic effects of dopamine and dobutamine in young children undergoing cardiac surgery. Br J Anaesth. 1995;74(4):419–423. doi: 10.1093/bja/74.4.419. [PubMed] [CrossRef] [Google Scholar]

32. Mahoney L, Shah G, Crook D, Rojas-Anaya H, Rabe H. A literature review of the pharmacokinetics and pharmacodynamics of dobutamine in neonates. Pediatr Cardiol. 2015;37:14–23. doi: 10.1007/s00246-015-1263-9. [PubMed] [CrossRef] [Google Scholar]

33. Barton P, Garcia J, Kouatli A, Kitchen L, Zorka A, Lindsay C, et al. Hemodynamic effects of i.v. milrinone lactate in pediatric patients with septic shock. A prospective, double-blinded, randomized, placebo-controlled, interventional study. Chest. 1996;109(5):1302–1312. doi: 10.1378/chest.109.5.1302. [PubMed] [CrossRef] [Google Scholar]

34. Bailey JM, Miller BE, Lu W, Tosone SR, Kanter KR, Tam VK. The pharmacokinetics of milrinone in pediatric patients after cardiac surgery. Anesthesiology. 1999;90(4):1012–1018. doi: 10.1097/00000542-199904000-00014. [PubMed] [CrossRef] [Google Scholar]

35. Hoffman TM, Wernovsky G, Atz AM, Kulik TJ, Nelson DP, Chang AC, et al. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation. 2003;107(7):996–1002. doi: 10.1161/01.CIR.0000051365.81920.28. [PubMed] [CrossRef] [Google Scholar]

36. Lechner E, Hofer A, Leitner-Peneder G, Freynschlag R, Mair R, Weinzettel R, et al. Levosimendan versus milrinone in neonates and infants after corrective open-heart surgery: a pilot study. Pediatr Crit Care Med. 2012;13(5):542–548. doi: 10.1097/PCC.0b013e3182455571. [PubMed] [CrossRef] [Google Scholar]

37. Namachivayam P, Crossland DS, Butt WW, Shekerdemian LS. Early experience with Levosimendan in children with ventricular dysfunction. Pediatr Crit Care Med. 2006;7(5):445–448. doi: 10.1097/01.PCC.0000235251.14491.75. [PubMed] [CrossRef] [Google Scholar]

38. Levy B, Perez P, Perny J, Thivilier C, Gerard A. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med. 2011;39(3):450–455. doi: 10.1097/CCM.0b013e3181ffe0eb. [PubMed] [CrossRef] [Google Scholar]

39. Meyer S, McGuire W, Gottschling S, Shamdeen GM, Gortner L. The role of vasopressin and terlipressin in catecholamine-resistant shock and cardio-circulatory arrest in children: review of the literature. Wien Med Wochenschr. 2011;161(7–8):192–203. doi: 10.1007/s10354-010-0853-7. [PubMed] [CrossRef] [Google Scholar]

40. Mastropietro CW, Davalos MC, Seshadri S, Walters HL, 3rd, Delius RE. Clinical response to arginine vasopressin therapy after paediatric cardiac surgery. Cardiol Young. 2013;23(3):387–393. doi: 10.1017/S1047951112000996. [PubMed] [CrossRef] [Google Scholar]

41. Matok I, Rubinshtein M, Levy A, Vardi A, Leibovitch L, Mishali D, et al. Terlipressin for children with extremely low cardiac output after open heart surgery. Ann Pharmacother. 2009;43(3):423–429. doi: 10.1345/aph.1L199. [PubMed] [CrossRef] [Google Scholar]

42. Jerath N, Frndova H, McCrindle BW, Gurofsky R, Humpl T. Clinical impact of vasopressin infusion on hemodynamics, liver and renal function in pediatric patients. Intensive Care Med. 2008;34(7):1274–1280. doi: 10.1007/s00134-008-1055-2. [PubMed] [CrossRef] [Google Scholar]

43. Mastropietro CW, Clark JA, Delius RE, Walters HL, 3rd, Sarnaik AP. Arginine vasopressin to manage hypoxemic infants after stage I palliation of single ventricle lesions. Pediatr Crit Care Med. 2008;9(5):506–510. doi: 10.1097/PCC.0b013e3181849ce0. [PubMed] [CrossRef] [Google Scholar]

44. Duncan JM, Meaney P, Simpson P, Berg RA, Nadkarni V, Schexnayder S. Vasopressin for in-hospital pediatric cardiac arrest: results from the American Heart Association National Registry of Cardiopulmonary Resuscitation. Pediatr Crit Care Med. 2009;10(2):191–195. doi: 10.1097/PCC.0b013e31819a36f2. [PubMed] [CrossRef] [Google Scholar]

45. Appelbaum A, Blackstone EH, Kouchoukos NT, Kirklin JW. Afterload reduction and cardiac ouptut in infants early after intracardiac surgery. Am J Cardiol. 1977;39(3):445–451. doi: 10.1016/S0002-9149(77)80103-3. [PubMed] [CrossRef] [Google Scholar]

46. Benzing G, 3rd, Helmsworth JA, Schrieber JT, Loggie J, Kaplan S. Nitroprusside after open-heart surgery. Circulation. 1976;54(3):467–471. doi: 10.1161/01.CIR.54.3.467. [PubMed] [CrossRef] [Google Scholar]

47. Dillon TR, Janos GG, Meyer RA, Benzing G, 3rd, Kaplan S. Vasodilator therapy for congestive heart failure. J Pediatr. 1980;96(4):623–629. doi: 10.1016/S0022-3476(80)80726-8. [PubMed] [CrossRef] [Google Scholar]

48. Frobel AK, Hulpke-Wette M, Schmidt KG, Laer S. Beta-blockers for congestive heart failure in children. Cochrane Database Syst Rev. 2009;(1):CD007037. [PubMed]

49. Chang PM, Silka MJ, Moromisato DY, Bar-Cohen Y. Amiodarone versus procainamide for the acute treatment of recurrent supraventricular tachycardia in pediatric patients. Circ Arrhythm Electrophysiol. 2010;3(2):134–140. doi: 10.1161/CIRCEP.109.901629. [PubMed] [CrossRef] [Google Scholar]

50. Robinson J, Hartling L, Vandermeer B, Crumley E, Klassen TP. Intravenous immunoglobulin for presumed viral myocarditis in children and adults. Cochrane Database Syst Rev. 2005;(1):CD004370. [PubMed]

51. Kim HJ, Yoo GH, Kil HR. Clinical outcome of acute myocarditis in children according to treatment modalities. Korean J Pediatr. 2010;53(7):745–752. doi: 10.3345/kjp.2010.53.7.745. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Hia CP, Yip WC, Tai BC, Quek SC. Immunosuppressive therapy in acute myocarditis: an 18 year systematic review. Arch Dis Child. 2004;89(6):580–584. doi: 10.1136/adc.2003.034686. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Aziz KU, Patel N, Sadullah T, Tasneem H, Thawerani H, Talpur S. Acute viral myocarditis: role of immunosuppression: a prospective randomised study. Cardiol Young. 2010;20(5):509–515. doi: 10.1017/S1047951110000594. [PubMed] [CrossRef] [Google Scholar]

54. Camargo PR, Snitcowsky R, da Luz PL, Mazzieri R, Higuchi ML, Rati M, et al. Favorable effects of immunosuppressive therapy in children with dilated cardiomyopathy and active myocarditis. Pediatr Cardiol. 1995;16(2):61–68. doi: 10.1007/BF00796819. [PubMed] [CrossRef] [Google Scholar]

55. Gupta P, Kuperstock JE, Hashmi S, Arnolde V, Gossett JM, Prodhan P, et al. Efficacy and predictors of success of noninvasive ventilation for prevention of extubation failure in critically ill children with heart disease. Pediatr Cardiol. 2013;34(4):964–977. doi: 10.1007/s00246-012-0590-3. [PubMed] [CrossRef] [Google Scholar]

56. Odena MP, Marimbaldo IP, Matute SS, Argallo MB, Rico AP. Aplicacion de ventilacion no invasiva en pacientes postoperados cardiacos. Estudio retrospectivo. An Pediatr (Barc). 2009;71(1):13–19. doi: 10.1016/j.anpedi.2009.03.014. [PubMed] [CrossRef] [Google Scholar]

57. Yildizdas D, Yilmaz HL, Erdem S. Treatment of cardiogenic pulmonary oedema by helmet-delivered non-invasive pressure support ventilation in children with scorpion sting envenomation. Ann Acad Med Singapore. 2008;37(3):230–234. [PubMed] [Google Scholar]

58. Bacha EA, Zimmerman FJ, Mor-Avi V, Weinert L, Starr JP, Sugeng L, et al. Ventricular resynchronization by multisite pacing improves myocardial performance in the postoperative single-ventricle patient. Ann Thorac Surg. 2004;78(5):1678–1683. doi: 10.1016/j.athoracsur.2004.04.065. [PubMed] [CrossRef] [Google Scholar]

59. Dubin AM, Janousek J, Rhee E, Strieper MJ, Cecchin F, Law IH, et al. Resynchronization therapy in pediatric and congenital heart disease patients: an international multicenter study. J Am Coll Cardiol. 2005;46(12):2277–2283. doi: 10.1016/j.jacc.2005.05.096. [PubMed] [CrossRef] [Google Scholar]

60. Janousek J, Gebauer RA, Abdul-Khaliq H, Turner M, Kornyei L, Grollmuss O, et al. Cardiac resynchronisation therapy in paediatric and congenital heart disease: differential effects in various anatomical and functional substrates. Heart. 2009;95(14):1165–1171. doi: 10.1136/hrt.2008.160465. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Janousek J, Vojtovic P, Hucin B, Tlaskal T, Gebauer RA, Gebauer R, et al. Resynchronization pacing is a useful adjunct to the management of acute heart failure after surgery for congenital heart defects. Am J Cardiol. 2001;88(2):145–152. doi: 10.1016/S0002-9149(01)01609-5. [PubMed] [CrossRef] [Google Scholar]

62. Zimmerman FJ, Starr JP, Koenig PR, Smith P, Hijazi ZM, Bacha EA. Acute hemodynamic benefit of multisite ventricular pacing after congenital heart surgery. Ann Thorac Surg. 2003;75(6):1775–1780. doi: 10.1016/S0003-4975(03)00175-9. [PubMed] [CrossRef] [Google Scholar]

63. Biarent D, Bourdages M, Berner M, Miro J, Doesburg NH, Toledano B. Heart failure in infants and children: etiology, pathophysiology, and diagnosis of heart failure. In: Lacroix DG, Gauthier M, Hubert P, Leclerc F, Gaudreault P, editors. Urgences et soins intensifs pediatriques. Masson: Edition du Sainte Justine et Elsevier; 2007. pp. 187–210. [Google Scholar]

64. Kantor PF, Mertens LL. Clinical practice: heart failure in children. Part II: current maintenance therapy and new therapeutic approaches. Eur J Pediatr. 2010;169(4):403–410. doi: 10.1007/s00431-009-1133-7. [PubMed] [CrossRef] [Google Scholar]

65. Kim JJ, Rossano JW, Nelson DP, Price JF, Dreyer WJ. Heart failure in infants and children: etiology, pathophysiology, and diagnosis of heart failure. In: Nichols DG, editor. Roger's textbook of pediatric intensive care. Philadelphia: Wolters Kluwer/Lippincott, Williams & Wilkins; 2008. pp. 1064–1074. [Google Scholar]

66. Zingarelli B. Shock and reperfusion. In: Nichols DG, editor. Roger's textbook of pediatric intensive care. Philadelphia: Wolters Kluwer/Lippincott, Williams & Wilkins; 2008. pp. 1039–1063. [Google Scholar]

67. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36(1):296–327. doi: 10.1097/01.CCM.0000298158.12101.41. [PubMed] [CrossRef] [Google Scholar]

68. Duke TD, Butt W, South M. Predictors of mortality and multiple organ failure in children with sepsis. Intensive Care Med. 1997;23(6):684–692. doi: 10.1007/s001340050394. [PubMed] [CrossRef] [Google Scholar]

69. Hatherill M, McIntyre AG, Wattie M, Murdoch IA. Early hyperlactataemia in critically ill children. Intensive Care Med. 2000;26(3):314–318. doi: 10.1007/s001340051155. [PubMed] [CrossRef] [Google Scholar]

70. Halley GC, Tibby S. Hemodynamic monitoring. In: Nichols DG, editor. Roger's textbook of pediatric intensive care. Philadelphia: Wolters Kluwer/Lippincott, Williams & Wilkins; 2008. pp. 1039–1063. [Google Scholar]

71. Babuin L, Jaffe AS. Troponin: the biomarker of choice for the detection of cardiac injury. CMAJ. 2005;173(10):1191–1202. doi: 10.1503/cmaj/051291. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Checchia PA, Moynihan JA, Brown L. Cardiac troponin I as a predictor of mortality for pediatric submersion injuries requiring out-of-hospital cardiopulmonary resuscitation. Pediatr Emerg Care. 2006;22(4):222–225. doi: 10.1097/01.pec.0000208504.21625.f5. [PubMed] [CrossRef] [Google Scholar]

73. Kantor PF, Rusconi P, Lipshultz S, Mital S, Wilkinson JD, Burch M. Current applications and future needs for biomarkers in pediatric cardiomyopathy and heart failure: summary from the second international conference on pediatric cardiomyopathy. Prog Pediatr Cardiol. 2011;32(1):11–14. doi: 10.1016/j.ppedcard.2011.06.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Sugimoto M, Manabe H, Nakau K, Furuya A, Okushima K, Fujiyasu H, et al. The role of N-terminal pro-B-type natriuretic peptide in the diagnosis of congestive heart failure in children—correlation with the heart failure score and comparison with B-type natriuretic peptide. Circ J. 2010;74(5):998–1005. doi: 10.1253/circj.CJ-09-0535. [PubMed] [CrossRef] [Google Scholar]

75. Gessler P, Knirsch W, Schmitt B, Rousson V, von Eckardstein A. Prognostic value of plasma N-terminal pro-brain natriuretic peptide in children with congenital heart defects and open-heart surgery. J Pediatr. 2006;148(3):372–376. doi: 10.1016/j.jpeds.2005.10.039. [PubMed] [CrossRef] [Google Scholar]

76. Nir A, Lindinger A, Rauh M, Bar-Oz B, Laer S, Schwachtgen L, et al. NT-pro-B-type natriuretic peptide in infants and children: reference values based on combined data from four studies. Pediatr Cardiol. 2009;30(1):3–8. doi: 10.1007/s00246-008-9258-4. [PubMed] [CrossRef] [Google Scholar]

77. Cohen S, Springer C, Avital A, Perles Z, Rein AJ, Argaman Z, et al. Amino-terminal pro-brain-type natriuretic peptide: heart or lung disease in pediatric respiratory distress? Pediatrics. 2005;115(5):1347–1350. doi: 10.1542/peds.2004-1429. [PubMed] [CrossRef] [Google Scholar]

78. Koglin J, Pehlivanli S, Schwaiblmair M, Vogeser M, Cremer P, vonScheidt W. Role of brain natriuretic peptide in risk stratification of patients with congestive heart failure. J Am Coll Cardiol. 2001;38(7):1934–1941. doi: 10.1016/S0735-1097(01)01672-2. [PubMed] [CrossRef] [Google Scholar]

79. Pottecher J, Bouzou G, Van de Louw A. Monitorage de la saturation de pouls: intérêts et limites. Réanimation. 2003;12:30–36. doi: 10.1016/S1624-0693(02)00006-3. [CrossRef] [Google Scholar]

80. Marino BS, Kaltman JR, Tanel RE. Cardiac conduction, dysrythmia, and pacing. In: Nichols DG, editor. Roger's textbook of pediatric intensive care. Philadelphia: Wolters Kluwer/Lippincott, Williams & Wilkins; 2008. pp. 1126–1149. [Google Scholar]

81. Breinholt JP, Nelson DP, Towbin JA. Heart failure in infants and children: cardiomyopathy. In: Nichols DG, editor. Roger's textbook of pediatric intensive care. Philadelphia: Wolters Kluwer/Lippincott, Williams & Wilkins; 2008. pp. 1082–1092. [Google Scholar]

82. Dannevig I, Dale HC, Liestol K, Lindemann R. Blood pressure in the neonate: three non-invasive oscillometric pressure monitors compared with invasively measured blood pressure. Acta Paediatr. 2005;94(2):191–196. doi: 10.1080/08035250410023629. [PubMed] [CrossRef] [Google Scholar]

83. Chantepie A, Gold F. Physiologie et pathologie circulatoires. In: Amiel-Tison C, Cabrol D, editors. Foetus et nouveau-né de faible poids. Masson, Paris: Collection de la périnatalité; 2000. pp. 63–83. [Google Scholar]

84. Clark JA, Lieh-Lai MW, Sarnaik A, Mattoo TK. Discrepancies between direct and indirect blood pressure measurements using various recommendations for arm cuff selection. Pediatrics. 2002;110(5):920–923. doi: 10.1542/peds.110.5.920. [PubMed] [CrossRef] [Google Scholar]

85. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228. doi: 10.1007/s00134-012-2769-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Sofer S, Zucker N, Bilenko N, Levitas A, Zalzstein E, Amichay D, et al. The importance of early bedside echocardiography in children with scorpion envenomation. Toxicon. 2013;68:1–8. doi: 10.1016/j.toxicon.2013.02.016. [PubMed] [CrossRef] [Google Scholar]

87. Joseph MX, Disney PJ, Da Costa R, Hutchison SJ. Transthoracic echocardiography to identify or exclude cardiac cause of shock. Chest. 2004;126(5):1592–1597. doi: 10.1378/chest.126.5.1592. [PubMed] [CrossRef] [Google Scholar]

88. Pershad J, Myers S, Plouman C, Rosson C, Elam K, Wan J, et al. Bedside limited echocardiography by the emergency physician is accurate during evaluation of the critically ill patient. Pediatrics. 2004;114(6):e667–e671. doi: 10.1542/peds.2004-0881. [PubMed] [CrossRef] [Google Scholar]

89. Spurney CF, Sable CA, Berger JT, Martin GR. Use of a hand-carried ultrasound device by critical care physicians for the diagnosis of pericardial effusions, decreased cardiac function, and left ventricular enlargement in pediatric patients. J Am Soc Echocardiogr. 2005;18(4):313–319. doi: 10.1016/j.echo.2004.10.016. [PubMed] [CrossRef] [Google Scholar]

90. Ruggiero A, De Rosa G, Rizzo D, Leo A, Maurizi P, De Nisco A, et al. Myocardial performance index and biochemical markers for early detection of doxorubicin-induced cardiotoxicity in children with acute lymphoblastic leukaemia. Int J Clin Oncol. 2013;18(5):927–933. doi: 10.1007/s10147-012-0458-9. [PubMed] [CrossRef] [Google Scholar]

91. Vignon P, Mucke F, Bellec F, Marin B, Croce J, Brouqui T, et al. Basic critical care echocardiography: validation of a curriculum dedicated to noncardiologist residents. Crit Care Med. 2011;39(4):636–642. doi: 10.1097/CCM.0b013e318206c1e4. [PubMed] [CrossRef] [Google Scholar]

92. Creteur J. Monitorage de la saturation tissulaire musculaire en oxygène dans les états de choc. Réanimation. 2009;18:254–260. doi: 10.1016/j.reaurg.2009.02.004. [CrossRef] [Google Scholar]

93. Tobias JD, Russo P, Russo J. Changes in near infrared spectroscopy during deep hypothermic circulatory arrest. Ann Card Anaesth. 2009;12(1):17–21. doi: 10.4103/0971-9784.43057. [PubMed] [CrossRef] [Google Scholar]

94. McQuillen PS, Nishimoto MS, Bottrell CL, Fineman LD, Hamrick SE, Glidden DV, et al. Regional and central venous oxygen saturation monitoring following pediatric cardiac surgery: concordance and association with clinical variables. Pediatr Crit Care Med. 2007;8(2):154–160. doi: 10.1097/01.PCC.0000257101.37171.BE. [PubMed] [CrossRef] [Google Scholar]

95. Chakravarti SB, Mittnacht AJ, Katz JC, Nguyen K, Joashi U, Srivastava S. Multisite near-infrared spectroscopy predicts elevated blood lactate level in children after cardiac surgery. J Cardiothorac Vasc Anesth. 2009;23(5):663–667. doi: 10.1053/j.jvca.2009.03.014. [PubMed] [CrossRef] [Google Scholar]

96. Kaufman J, Almodovar MC, Zuk J, Friesen RH. Correlation of abdominal site near-infrared spectroscopy with gastric tonometry in infants following surgery for congenital heart disease. Pediatr Crit Care Med. 2008;9(1):62–68. doi: 10.1097/01.PCC.0000298640.47574.DA. [PubMed] [CrossRef] [Google Scholar]

97. Abramo T, Aggarwal N, Kane I, Crossman K, Meredith M. Cerebral oximetry and cerebral blood flow monitoring in 2 pediatric survivors with out-of-hospital cardiac arrest. Am J Emerg Med. 2014;32(4):394 e5–e10. [PubMed]

98. Nagdyman N, Fleck TP, Ewert P, Abdul-Khaliq H, Redlin M, Lange PE. Cerebral oxygenation measured by near-infrared spectroscopy during circulatory arrest and cardiopulmonary resuscitation. Br J Anaesth. 2003;91(3):438–442. doi: 10.1093/bja/aeg181. [PubMed] [CrossRef] [Google Scholar]

99. Rozé JC, Bigras JL. Surveillance cardiorespiratoire. In: Lacroix J, Gauthier M, Hubert P, Leclerc F, Gaudreault P, editors. Urgences et soins intensifs pediatriques. Masson: Edition du Sainte Justine et Elsevier; 2007. pp. 3–33. [Google Scholar]

100. Ranucci M, Isgro G, De La Torre T, Romitti F, De Benedetti D, Carlucci C, et al. Continuous monitoring of central venous oxygen saturation (Pediasat) in pediatric patients undergoing cardiac surgery: a validation study of a new technology. J Cardiothorac Vasc Anesth. 2008;22(6):847–852. doi: 10.1053/j.jvca.2008.04.003. [PubMed] [CrossRef] [Google Scholar]

101. Grissom CK, Morris AH, Lanken PN, Ancukiewicz M, Orme JF, Jr, Schoenfeld DA, et al. Association of physical examination with pulmonary artery catheter parameters in acute lung injury. Crit Care Med. 2009;37(10):2720–2726. doi: 10.1097/CCM.0b013e3181a59532. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med. 2010;184:514–520. doi: 10.1164/rccm.201010-1584CI. [PubMed] [CrossRef] [Google Scholar]

103. Skowno JJ, Broadhead M. Cardiac output measurement in pediatric anesthesia. Paediatr Anaesth. 2008;18(11):1019–1028. doi: 10.1111/j.1460-9592.2008.02720.x. [PubMed] [CrossRef] [Google Scholar]

104. Sanchez O, Castelain V. Intérêt du cathétérisme cardiaque droit en réanimation. EMC (Elsevier Masson SAS, Paris). 2007; Pneumologie (6-040-P-30).

105. Lemson J, de Boode WP, Hopman JC, Singh SK, van der Hoeven JG. Validation of transpulmonary thermodilution cardiac output measurement in a pediatric animal model. Pediatr Crit Care Med. 2008;9(3):313–319. doi: 10.1097/PCC.0b013e31816c6fa1. [PubMed] [CrossRef] [Google Scholar]

106. Pauli C, Fakler U, Genz T, Hennig M, Lorenz HP, Hess J. Cardiac output determination in children: equivalence of the transpulmonary thermodilution method to the direct Fick principle. Intensive Care Med. 2002;28(7):947–952. doi: 10.1007/s00134-002-1334-2. [PubMed] [CrossRef] [Google Scholar]

107. Tibby SM, Hatherill M, Marsh MJ, Morrison G, Anderson D, Murdoch IA. Clinical validation of cardiac output measurements using femoral artery thermodilution with direct Fick in ventilated children and infants. Intensive Care Med. 1997;23(9):987–991. doi: 10.1007/s001340050443. [PubMed] [CrossRef] [Google Scholar]

108. Kim JJ, Dreyer WJ, Chang AC, Breinholt JP, 3rd, Grifka RG. Arterial pulse wave analysis: an accurate means of determining cardiac output in children. Pediatr Crit Care Med. 2006;7(6):532–535. doi: 10.1097/01.PCC.0000243723.47105.A2. [PubMed] [CrossRef] [Google Scholar]

109. del Nido PJ, Dalton HJ, Thompson AE, Siewers RD. Extracorporeal membrane oxygenator rescue in children during cardiac arrest after cardiac surgery. Circulation. 1992;86(5 Suppl):II300–II304. [PubMed] [Google Scholar]

110. Alsoufi B, Al-Radi OO, Nazer RI, Gruenwald C, Foreman C, Williams WG, et al. Survival outcomes after rescue extracorporeal cardiopulmonary resuscitation in pediatric patients with refractory cardiac arrest. J Thorac Cardiovasc Surg. 2007;134(4):952–9 e2. [PubMed]

111. Alsoufi B, Awan A, Manlhiot C, Guechef A, Al-Halees Z, Al-Ahmadi M, et al. Results of rapid-response extracorporeal cardiopulmonary resuscitation in children with refractory cardiac arrest following cardiac surgery. Eur J Cardiothorac Surg. 2014;45(2):268–275. doi: 10.1093/ejcts/ezt319. [PubMed] [CrossRef] [Google Scholar]

112. Delmo Walter EM, Alexi-Meskishvili V, Huebler M, Redlin M, Boettcher W, Weng Y, et al. Rescue extracorporeal membrane oxygenation in children with refractory cardiac arrest. Interact CardioVasc Thorac Surg. 2011;12(6):929–934. doi: 10.1510/icvts.2010.254193. [PubMed] [CrossRef] [Google Scholar]

113. Duncan BW, Ibrahim AE, Hraska V, del Nido PJ, Laussen PC, Wessel DL, et al. Use of rapid-deployment extracorporeal membrane oxygenation for the resuscitation of pediatric patients with heart disease after cardiac arrest. J Thorac Cardiovasc Surg. 1998;116(2):305–311. doi: 10.1016/S0022-5223(98)70131-X. [PubMed] [CrossRef] [Google Scholar]

114. Huang SC, Wu ET, Wang CC, Chen YS, Chang CI, Chiu IS, et al. Eleven years of experience with extracorporeal cardiopulmonary resuscitation for paediatric patients with in-hospital cardiac arrest. Resuscitation. 2012;83(6):710–714. doi: 10.1016/j.resuscitation.2012.01.031. [PubMed] [CrossRef] [Google Scholar]

115. Lowry AW, Morales DL, Graves DE, Knudson JD, Shamszad P, Mott AR, et al. Characterization of extracorporeal membrane oxygenation for pediatric cardiac arrest in the United States: analysis of the kids’ inpatient database. Pediatr Cardiol. 2013;34(6):1422–1430. doi: 10.1007/s00246-013-0666-8. [PubMed] [CrossRef] [Google Scholar]

116. Matos RI, Watson RS, Nadkarni VM, Huang HH, Berg RA, Meaney PA, et al. Duration of cardiopulmonary resuscitation and illness category impact survival and neurologic outcomes for in-hospital pediatric cardiac arrests. Circulation. 2013;127(4):442–451. doi: 10.1161/CIRCULATIONAHA.112.125625. [PubMed] [CrossRef] [Google Scholar]

117. Ortmann L, Prodhan P, Gossett J, Schexnayder S, Berg R, Nadkarni V, et al. Outcomes after in-hospital cardiac arrest in children with cardiac disease: a report from Get With the Guidelines-Resuscitation. Circulation. 2011;124(21):2329–2337. doi: 10.1161/CIRCULATIONAHA.110.013466. [PubMed] [CrossRef] [Google Scholar]

118. Prodhan P, Fiser RT, Dyamenahalli U, Gossett J, Imamura M, Jaquiss RD, et al. Outcomes after extracorporeal cardiopulmonary resuscitation (ECPR) following refractory pediatric cardiac arrest in the intensive care unit. Resuscitation. 2009;80(10):1124–1129. doi: 10.1016/j.resuscitation.2009.07.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Raymond TT, Cunnyngham CB, Thompson MT, Thomas JA, Dalton HJ, Nadkarni VM. Outcomes among neonates, infants, and children after extracorporeal cardiopulmonary resuscitation for refractory in hospital pediatric cardiac arrest: a report from the National Registry of Cardiopulmonary Resuscitation. Pediatr Crit Care Med. 2010;11(3):362–371. [PubMed] [Google Scholar]

120. Turek JW, Andersen ND, Lawson DS, Bonadonna D, Turley RS, Peters MA, et al. Outcomes before and after implementation of a pediatric rapid-response extracorporeal membrane oxygenation program. Ann Thorac Surg. 2013;95(6):2140–2146. doi: 10.1016/j.athoracsur.2013.01.050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Brown KL, Ichord R, Marino BS, Thiagarajan RR. Outcomes following extracorporeal membrane oxygenation in children with cardiac disease. Pediatr Crit Care Med. 2013;14(5 Suppl 1):S73–S83. doi: 10.1097/PCC.0b013e318292e3fc. [PubMed] [CrossRef] [Google Scholar]

122. Coskun KO, Coskun ST, Popov AF, Hinz J, El-Arousy M, Schmitto JD, et al. Extracorporeal life support in pediatric cardiac dysfunction. J Cardiothorac Surg. 2010;5:112. doi: 10.1186/1749-8090-5-112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Duncan BW, Bohn DJ, Atz AM, French JW, Laussen PC, Wessel DL. Mechanical circulatory support for the treatment of children with acute fulminant myocarditis. J Thorac Cardiovasc Surg. 2001;122(3):440–448. doi: 10.1067/mtc.2001.115243. [PubMed] [CrossRef] [Google Scholar]

124. Wilmot I, Morales DL, Price JF, Rossano JW, Kim JJ, Decker JA, et al. Effectiveness of mechanical circulatory support in children with acute fulminant and persistent myocarditis. J Card Fail. 2011;17(6):487–494. doi: 10.1016/j.cardfail.2011.02.008. [PubMed] [CrossRef] [Google Scholar]

125. Lequier L, Joffe AR, Robertson CM, Dinu IA, Wongswadiwat Y, Anton NR, et al. Two-year survival, mental, and motor outcomes after cardiac extracorporeal life support at less than five years of age. J Thorac Cardiovasc Surg. 2008;136(4):976–83 e3. [PubMed]

126. Kleinman ME, de Caen AR, Chameides L, Atkins DL, Berg RA, Berg MD, et al. Part 10: pediatric basic and advanced life support: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2010;122(16 Suppl 2):S466–S515. doi: 10.1161/CIRCULATIONAHA.110.971093. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Thiagarajan RR, Laussen PC, Rycus PT, Bartlett RH, Bratton SL. Extracorporeal membrane oxygenation to aid cardiopulmonary resuscitation in infants and children. Circulation. 2007;116(15):1693–1700. doi: 10.1161/CIRCULATIONAHA.106.680678. [PubMed] [CrossRef] [Google Scholar]

128. Tajik M, Cardarelli MG. Extracorporeal membrane oxygenation after cardiac arrest in children: what do we know? Eur J Cardiothorac Surg. 2008;33(3):409–417. doi: 10.1016/j.ejcts.2007.12.018. [PubMed] [CrossRef] [Google Scholar]

129. Haile DT, Schears GJ. Optimal time for initiating extracorporeal membrane oxygenation. Semin Cardiothorac Vasc Anesth. 2009;13(3):146–153. doi: 10.1177/1089253209347924. [PubMed] [CrossRef] [Google Scholar]

130. Barrett CS, Bratton SL, Salvin JW, Laussen PC, Rycus PT, Thiagarajan RR. Neurological injury after extracorporeal membrane oxygenation use to aid pediatric cardiopulmonary resuscitation. Pediatr Crit Care Med. 2009;10(4):445–451. doi: 10.1097/PCC.0b013e318198bd85. [PubMed] [CrossRef] [Google Scholar]

131. Huang SC, Wu ET, Chen YS, Chang CI, Chiu IS, Wang SS, et al. Extracorporeal membrane oxygenation rescue for cardiopulmonary resuscitation in pediatric patients. Crit Care Med. 2008;36(5):1607–1613. doi: 10.1097/CCM.0b013e318170b82b. [PubMed] [CrossRef] [Google Scholar]

132. Trittenwein G, Pansi H, Graf B, Golej J, Burda G, Hermon M, et al. Proposed entry criteria for postoperative cardiac extracorporeal membrane oxygenation after pediatric open heart surgery. Artif Organs. 1999;23(11):1010–1014. doi: 10.1046/j.1525-1594.1999.06457.x. [PubMed] [CrossRef] [Google Scholar]

133. Karamlou T, Vafaeezadeh M, Parrish AM, Cohen GA, Welke KF, Permut L, et al. Increased extracorporeal membrane oxygenation center case volume is associated with improved extracorporeal membrane oxygenation survival among pediatric patients. J Thorac Cardiovasc Surg. 2013;145(2):470–475. doi: 10.1016/j.jtcvs.2012.11.037. [PubMed] [CrossRef] [Google Scholar]

What is the most common type of shock in infants and children?

Hypovolemic Shock This is the most common cause of shock worldwide in infants, most often secondary to diarrhea. Other examples of hypovolemic shock include blood loss, vomiting, heat stroke, or burns.

What is the most common shock in children?

Of pediatric patients who present to the emergency department in shock, sepsis is the leading cause (57%), followed by hypovolemic shock (24%), distributive shock (14%), and cardiogenic shock (5%).

Which type of shock is rare in pediatric patients?

Obstructive Shock PE is rare in children, but it carries a 10% to 20% mortality.

What is the most common cause of shock among pediatric trauma patients?

Circulatory assessment – Hypovolemia due to blood loss is the most common cause of shock in the pediatric trauma patient [6], and its early recognition and treatment are critical during trauma resuscitation.