What are the components of TLD?

The Thermoluminescent Dosimeter (TLD) consists essentially of two parts - a TLD card and a TLD card holder.

 

The TLD card consists of two or more Lithium Fluoride (LiF) chips mounted on an aluminium card. Each card is identified by a unique bar-code. The issued TLD card is sealed in a plastic wrapper and labelled with the period of issue, wearer's name, wearer's ID number, Company Code and TLD number. The plastic wrapper should not be removed at any time. The card has a cut-away corner to ensure that it fits exactly into the TLD card holder. One LiF chip will be behind the open window for estimating skin dose while the other chip is behind a filter to estimate body dose.

 

The TLD card, encased within the holder, is called the thermoluminescent dosimeter (TLD) or more frequently referred to as the TLD badge. The correct way to wear it is to attach it to the trunk of the body at chest level or at waist level. If a protective apron is worn, the badge should be worn under the apron.

 

The TLD badge, as described above, shall be worn at all times while the individual is doing radiation work.

A thermoluminescent dosimeter, abbreviated as TLD,  is a passive radiation dosimeter, that measures ionizing radiation exposure by measuring the intensity of visible light emitted from a sensitive crystal in the detector when the crystal is heated. Radiation Dosimetry

A thermoluminescent dosimeter, abbreviated as TLD,  is a passive radiation dosimeter, that measures ionizing radiation exposure by measuring the intensity of visible light emitted from a sensitive crystal in the detector when the crystal is heated. The intensity of light emitted is measure by TLD reader and it is dependent upon the radiation exposure. Thermoluminescent dosimeters was invented in 1954 by Professor Farrington Daniels of the University of Wisconsin-Madison. TLD dosimeters are applicable to situations where real-time information is not needed, but precise accumulated dose monitoring records are desired for comparison to field measurements or for assessing the potential for long term health effects. In dosimetry, both the quartz fiber and film badge types are being superseded by TLDs and EPDs (Electronic Personal Dosimeter).

What is Thermoluminescence

What are the components of TLD?

Sievert – Unit of Equivalent Dose

In radiation protection, the sievert is a derived unit of equivalent dose and effective dose. The sievert represents the equivalent biological effect of the deposit of a joule of gamma rays energy in a kilogram of human tissue. Unit of sievert is of importance in radiation protection and was named after the Swedish scientist Rolf Sievert, who did a lot of the early work on radiation dosimetry in radiation therapy.

As was written, the sievert is used for radiation dose quantities such as equivalent dose and effective dose. Equivalent dose (symbol HT) is a dose quantity calculated for individual organs (index T – tissue). Equivalent dose is based on the absorbed dose to an organ, adjusted to account for the effectiveness of the type of radiation. Equivalent dose is given the symbol HT. The SI unit of HT is the sievert (Sv) or but rem (roentgen equivalent man) is still commonly used (1 Sv = 100 rem).

Examples of Doses in Sieverts

We must note that radiation is all around us. In, around, and above the world we live in. It is a natural energy force that surrounds us. It is a part of our natural world that has been here since the birth of our planet. In the following points we try to express enormous ranges of radiation exposure, which can be obtained from various sources.

  • 0.05 µSv – Sleeping next to someone
  • 0.09 µSv – Living within 30 miles of a nuclear power plant for a year
  • 0.1 µSv – Eating one banana
  • 0.3 µSv – Living within 50 miles of a coal power plant for a year
  • 10 µSv – Average daily dose received from natural background
  • 20 µSv – Chest X-ray
  • 40 µSv – A 5-hour airplane flight
  • 600 µSv – mammogram
  • 1 000 µSv – Dose limit for individual members of the public, total effective dose per annum
  • 3 650 µSv – Average yearly dose received from natural background
  • 5 800 µSv – Chest CT scan
  • 10 000 µSv – Average yearly dose received from natural background in Ramsar, Iran
  • 20 000 µSv – single full-body CT scan
  • 175 000 µSv – Annual dose from natural radiation on a monazite beach near Guarapari, Brazil.
  • 5 000 000 µSv – Dose that kills a human with a 50% risk within 30 days (LD50/30), if the dose is received over a very short duration.

References:

Radiation Protection:

  1. Knoll, Glenn F., Radiation Detection and Measurement 4th Edition, Wiley, 8/2010. ISBN-13: 978-0470131480.
  2. Stabin, Michael G., Radiation Protection and Dosimetry: An Introduction to Health Physics, Springer, 10/2010. ISBN-13: 978-1441923912.
  3. Martin, James E., Physics for Radiation Protection 3rd Edition, Wiley-VCH, 4/2013. ISBN-13: 978-3527411764.
  4. U.S.NRC, NUCLEAR REACTOR CONCEPTS
  5. U.S. Department of Energy, Instrumantation and Control. DOE Fundamentals Handbook, Volume 2 of 2. June 1992.

Nuclear and Reactor Physics:

  1. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 2nd ed., Addison-Wesley, Reading, MA (1983).
  2. J. R. Lamarsh, A. J. Baratta, Introduction to Nuclear Engineering, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2001, ISBN: 0- 471-39127-1.
  4. Glasstone, Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4th edition, 1994, ISBN: 978-0412985317
  5. W.S.C. Williams. Nuclear and Particle Physics. Clarendon Press; 1 edition, 1991, ISBN: 978-0198520467
  6. G.R.Keepin. Physics of Nuclear Kinetics. Addison-Wesley Pub. Co; 1st edition, 1965
  7. Robert Reed Burn, Introduction to Nuclear Reactor Operation, 1988.
  8. U.S. Department of Energy, Nuclear Physics and Reactor Theory. DOE Fundamentals Handbook, Volume 1 and 2. January 1993.
  9. Paul Reuss, Neutron Physics. EDP Sciences, 2008. ISBN: 978-2759800414.

See also:

Radiation Dosimeter

We hope, this article, Thermoluminescent Dosimeter – TLD, helps you. If so, give us a like in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about radiation and dosimeters.

What is a TLD made of?

TLDs are typically made of a solid inorganic crystal such as calcium fluoride or lithium fluoride. TLDs are used extensively throughout the world for personnel dosimetry. The detector is small enough to be easily carried on the person, and is read out by a dedicated reader.

What is the function of TLD?

TLDs are used for measuring gamma, x-ray, and beta radiation exposures. They can be worn as rings or body badges. They contain small chips of lithium fluoride, which absorb ionizing radiation energy and displace electrons from their ground state.

What two elements are used in a TLD personnel monitoring device?

Calcium fluoride and lithium fluoride are the two most typical types of TLDs. Calcium fluoride is used to detect gamma exposure. On the other hand, lithium fluoride is utilized for gamma and neutron exposure.

How many discs are in a TLD?

A badge consists of 3 TLD discs. 2 types of TLD badges are available one to measure whole body dose of radiation and the other to measure the dose in the wrist. The TLD cards are read by TLD reader which is controlled by PC and a software. The software displays the dose received by the TLD Badge in a given period.