Z2 topology

A Short Course on Topological Insulators pp 139-152 | Cite as

The \(\mathbb{Z}_{2}\) Invariant of Two-Dimensional Topological Insulators

  • Authors
  • Authors and affiliations

  • JánosK.Asbóth
  • LászlóOroszlány
  • AndrásPályi

Chapter

First Online: 23 February 2016

  • 8.6k Downloads

Part of the Lecture Notes in Physics book series (LNP, volume 919)

Abstract

A time-reversal invariant topological insulator either has no topologically protected edge states, or one pair of such edge states. Thus, its bulk topological invariant is either 0 or 1: it is a \(\mathbb{Z}_{2}\) number. Although obtaining a single yes/no answer might seem easier than the calculation of a Chern number, the \(\mathbb{Z}_{2}\) invariant is notoriously difficult to calculate. In this chapter we detail a way to calculate it that follows the same logic as before for the Chern number.

Keywords

Wilson LoopEdge StateTopological InsulatorCharge PumpBerry Phase

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A.A. Aligia, G. Ortiz, Quantum mechanical position operator and localization in extended systems. Phys. Rev. Lett. 82, 25602563 (1999)CrossRefADSGoogle Scholar

  2. 2.

    Y. Ando, Topological insulator materials. J. Phys. Soc. Jpn. 82(10), 102001 (2013)Google Scholar

  3. 3.

    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, 1988)Google Scholar

  4. 4.

    B.A. Bernevig, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, 2013)zbMATHGoogle Scholar

  5. 5.

    B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757 (2006)CrossRefADSGoogle Scholar

  6. 6.

    M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 4557 (1984)CrossRefADSzbMATHGoogle Scholar

  7. 7.

    J.C. Budich, B. Trauzettel, From the adiabatic theorem of quantum mechanics to topological states of matter. Physica Status Solidi RRL 7(12), 109129 (2013)CrossRefADSGoogle Scholar

  8. 8.

    C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, et al., Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340(6129), 167170 (2013)CrossRefADSGoogle Scholar

  9. 9.

    L. Du, I. Knez, G. Sullivan, R.-R. Du, Robust helical edge transport in gated InAsGaSb bilayers. Phys. Rev. Lett. 114, 096802 (2015)CrossRefADSGoogle Scholar

  10. 10.

    M. Franz, L. Molenkamp, Topological Insulators, vol. 6 (Elsevier, Oxford, 2013)Google Scholar

  11. 11.

    L. Fu, C.L. Kane, Time reversal polarization and a Z 2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006)CrossRefADSGoogle Scholar

  12. 12.

    T. Fukui, Y. Hatsugai, H. Suzuki, Chern numbers in discretized brillouin zone: efficient method of computing (spin) hall conductances. J. Phys. Soc. Jpn. 74(6), 16741677 (2005)CrossRefADSGoogle Scholar

  13. 13.

    I.C. Fulga, F. Hassler, A.R. Akhmerov, Scattering theory of topological insulators and superconductors. Phys. Rev. B 85, 165409 (2012)CrossRefADSGoogle Scholar

  14. 14.

    A. Garg, Berry phases near degeneracies: Beyond the simplest case. Am. J. Phys. 78(7), 661670 (2010)CrossRefADSGoogle Scholar

  15. 15.

    D.J. Griffiths, Introduction to Quantum Mechanics (Pearson Education Limited, Harlow, 2014)Google Scholar

  16. 16.

    F. Grusdt, D. Abanin, E. Demler, Measuring Z 2 topological invariants in optical lattices using interferometry. Phys. Rev. A 89, 043621 (2014)CrossRefADSGoogle Scholar

  17. 17.

    M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)CrossRefADSGoogle Scholar

  18. 18.

    B.R. Holstein, The adiabatic theorem and Berrys phase. Am. J. Phys. 57(12), 10791084 (1989)CrossRefADSMathSciNetGoogle Scholar

  19. 19.

    C.L. Kane, E.J. Mele, Z 2 topological order and the quantum spin hall effect. Phys. Rev. Lett. 95, 146802 (2005)CrossRefADSGoogle Scholar

  20. 20.

    M. König, H. Buhmann, L.W. Molenkamp, T. Hughes, C.-X. Liu, X.-L. Qi, S.-C. Zhang, The quantum spin hall effect: theory and experiment. J. Phys. Soc. Jpn. 77(3), 031007 (2008)Google Scholar

  21. 21.

    M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Xi, S.-C. Zhang, Quantum spin hall insulator state in HgTe quantum wells. Science 318(6), 766770 (2007)CrossRefADSGoogle Scholar

  22. 22.

    C. Liu, T.L. Hughes, X.-L. Qi, K. Wang, S.-C. Zhang, Quantum spin hall effect in inverted type-ii semiconductors. Phys. Rev. Lett. 100, 236601 (2008)CrossRefADSGoogle Scholar

  23. 23.

    N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Maximally localized wannier functions: Theory and applications. Rev. Mod. Phys. 84, 14191475 (2012)CrossRefADSGoogle Scholar

  24. 24.

    X.-L. Qi, Y.-S. Wu, S.-C. Zhang, Topological quantization of the spin hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B 74, 085308 (2006)CrossRefADSGoogle Scholar

  25. 25.

    X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 10571110 (2011)CrossRefADSGoogle Scholar

  26. 26.

    R. Resta, Berry Phase in Electronic Wavefunctions. Troisieme Cycle de la Physique en Suisse Romande (1996)Google Scholar

  27. 27.

    R. Resta, Macroscopic polarization from electronic wavefunctions. arXiv preprint cond-mat/9903216 (1999)Google Scholar

  28. 28.

    R. Resta, What makes an insulator different from a metal? arXiv preprint cond-mat/0003014 (2000)Google Scholar

  29. 29.

    S. Ryu, A.P. Schnyder, A. Furusaki, A.W.W. Ludwig, Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12(6), 065010 (2010)Google Scholar

  30. 30.

    S.-Q. Shen, Topological insulators: Dirac equation in condensed matter. Springer Ser. Solid-State Sci. 174 (2012)Google Scholar

  31. 31.

    A.A. Soluyanov, D. Vanderbilt, Smooth gauge for topological insulators. Phys. Rev. B 85, 115415 (2012)CrossRefADSGoogle Scholar

  32. 32.

    J. Sólyom, Fundamentals of the Physics of Solids: Volume III: Normal, Broken-Symmetry, and Correlated Systems, vol. 3 (Springer Science & Business Media, Berlin, 2008)Google Scholar

  33. 33.

    D.J. Thouless, Quantization of particle transport. Phys. Rev. B 27, 60836087 (1983)CrossRefADSMathSciNetGoogle Scholar

  34. 34.

    G.E. Volovik, The Universe in a Helium Droplet (Oxford University Press, New York, 2009)CrossRefGoogle Scholar

  35. 35.

    F. Wilczek, A. Zee, Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 21112114 (1984)CrossRefADSMathSciNetGoogle Scholar

  36. 36.

    D. Xiao, M.-C. Chang, Q. Niu, Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 19592007 (2010)CrossRefADSMathSciNetzbMATHGoogle Scholar

  37. 37.

    R. Yu, X.L. Qi, A. Bernevig, Z. Fang, X. Dai, Equivalent expression of Z 2 topological invariant for band insulators using the non-abelian Berry connection. Phys. Rev. B 84, 075119 (2011)CrossRefADSGoogle Scholar

  38. 38.

    J. Zak, Berrys phase for energy bands in solids. Phys. Rev. Lett. 62, 27472750 (1989)CrossRefADSGoogle Scholar

©Springer International Publishing Switzerland2016

Authors and Affiliations

  • JánosK.Asbóth
    • 1
  • LászlóOroszlány
    • 2
  • AndrásPályi
    • 3
    • 4
  1. 1.Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary
  2. 2.Department of Physics of Complex SystemsEötvös Loránd UniversityBudapestHungary
  3. 3.Department of Materials PhysicsEötvös Loránd UniversityBudapestHungary
  4. 4.Department of PhysicsBudapest University of Technology and EconomicsBudapestHungary