3. which intervention reduces the risk for skin breakdown in a patient with a new tracheostomy?

Several complications have been described during open and percutaneous tracheostomies. Most of the complications are life-threatening. For this reason, prevention, early diagnosis, and treatment are key factors during this procedure. [16, 17]  One retrospective study reported that three comorbidities that independently affect 30-day mortality in tracheostomy patients are severe liver disease, congestive heart failure, and peripheral vascular disease. [18]

A study from a third-level hospital examined the outcomes and survival of tracheotomized COVID-19 patients. The study found that smoking and obesity were risk factors for tracheostomy and that COVID-19 patients also had a higher risk of bleeding complications compared with non–COVID-19 patients. [19]

Immediate complications of tracheostomy

Apnea due to loss of hypoxic respiratory drive is mainly important in the awake patient. Ventilatory support must be available.

Intraoperative bleeding may arise from the cut edges of the very vascular thyroid gland and from lacerated vessels in the field that should be cauterized or ligated. Care should be taken to stop all thyroid bleeding before the cut edges are allowed to retract laterally, which makes them difficult to expose.

Pneumothorax or pneumomediastinum can result from direct injury to the pleura or the cupola of the lung (especially in children) or from high negative inspiratory pressures of patients who are awake and distressed. Early recognition is critical, and routine postoperative chest radiography should be considered after tracheotomy.

The paratracheal structures vulnerable to injury are the recurrent laryngeal nerves, the great vessels, and the esophagus. This danger is most prevalent in children because the softness of the trachea hinders its identification if it is not distended with a rigid object.

Although rare, a transient pulmonary edema can occur after tracheostomy, which provides relief of upper airway obstruction.

Endotracheal tube ignition is a rare complication associated with opening the trachea by electrocautery or laser. [20]

Early complications of tracheostomy

Early bleeding is usually the result of increased blood pressure as the patient emerges from anesthesia (and relative hypotension) and begins to cough. Although this may necessitate a return to the operating room, bleeding may be controlled with local packing and hypertension control. Packing should involve antibiotic-impregnated gauze (eg, iodophor). The patient should be given antistaphylococcal antibiotics while the packing is in place. Bloody secretions that issue from the tube may represent diffuse tracheitis (most commonly), rundown bleeding from the skin or thyroid, or ulceration from an ill-fitting tube or overzealous suctioning.

The use of dual cannula tubes lessens the threat of mucus plugging because the inner cannula can be removed for cleaning while the outer cannula safely maintains patency of the fresh tract. However, vigilance is still required, and all measures to thin and to remove secretions should be undertaken.

To some degree, tracheitis is present in all patients with fresh tracheostomies. Humidification, minimization of the fraction of inspired oxygen (because high oxygen levels exacerbate drying), and irrigation are essential. Moreover, motion of the tube within the trachea is extremely irritating and should be prevented with stabilization of the ventilator circuitry so that torsion is minimized.

The wound is colonized quickly; however, infection is unlikely if the incision has not been closed tightly and drainage is allowed. Opening the wound and instituting appropriate antibiotics should suffice to treat any early cellulitis.

The need to replace a new tracheostomy tube is not uncommon. In this situation, remember the access that the upper airway still affords. Bag-ventilate the patient and prepare for intubation if the tracheostomy tube cannot be replaced. Initial management includes passing an object (eg, smaller tube, clear nasogastric tube that shows the fogging of respiration) into the open wound.

A physician may attempt recannulation. This is facilitated with placement of the tube over the fiberoptic laryngoscope and reentry of the trachea under direct vision. However, endotracheal intubation remains the mainstay of airway management and should not be ignored while an increasingly traumatized tracheostomy site is labored over. Misplacement of the tracheostomy tube into the dreaded false passage, usually in the pretracheal space, should be suspected in the presence of difficult ventilation or passage of a suction catheter or if subcutaneous air or pneumothorax develops.

Subcutaneous emphysema results from a tight closure of tissue around the tube, tight packing material around the tube, or false passage of the tube into pretracheal tissue. It can progress to pneumothorax, pneumomediastinum, or both and should be treated with loosening of the closure or packing and with performance of a tube thoracotomy, if necessary. Incidence of pneumothorax after tracheostomy is 0-4% in adults and 10-17% in children; thus, postoperative chest radiography is recommended in children.

An overly long tube can mimic a unilateral mainstem intubation, causing atelectasis or collapse of the opposite lung.

Late complications of tracheostomy

Bleeding more than 48 hours after the procedure may herald a tracheoinnominate fistula caused by a low (farther along the trachea toward the carina) tracheostomy or an ill-fitting long tube. Half the patients with significant bleeding more than 48 hours after the procedure have tracheoinnominate erosions. This occurs in 0.6-0.7% of patients with tracheostomies, and the mortality rate of this complication approaches 80% depending on the aggressiveness of treatment. However, it is important to note that tracheoinnominate fistulas are typically complications that occur after long-standing (months) tracheostomy tube placement.

Patients with an impending tracheoinnominate fistula may have a sentinel bleed (ie, brief episode of brisk bright red blood from the tracheostomy site) hours or days before catastrophic bleeding. Some physicians prefer to investigate all such episodes of bleeding with a careful tracheobronchoscopy, looking for suggestive areas in the appropriate area of the trachea.

If diagnosis is made only when catastrophic bleeding occurs, management includes replacement of the tracheostomy tube with an endotracheal tube with the balloon inflated distally to the site of the bleeding to protect the airway. If the balloon does not tamponade the bleeding, a well-placed finger can temporize while the thoracic surgery team mobilizes for median sternotomy to locate and to control the bleeding vessel.

Occasionally, granulation tissue at the tip of the tracheostomy tube can bleed vigorously. This can be identified via flexible laryngoscopy and can be treated with excision or cautery via bronchoscope in the operating room.

Tracheomalacia is usually caused by a tube that fits poorly. Improved fit may allow recovery of the softened cartilage.

Injury to the cricoid cartilage, the only circumferential ring in the trachea, can lead to laryngeal stenosis. Stenosis typically occurs at the site of the tracheostomy or at the area irritated by the cuff. Modern high-volume low-pressure cuffs have reduced the rate of post-tracheostomy stenosis. However, care must still be taken not to overinflate these cuffs and to deflate them periodically.

Tracheal stenosis typically develops several weeks after decannulation as subacute distress and is often mistaken for bronchitis. Treatment is surgical and ranges from formal resection and reconstruction to less invasive means of debridement or stenting for palliation. Videos of tracheal stenosis are included below.

This video demonstrates the results of rigid direct laryngoscopy and flexible tracheal endoscopy in a patient with significant tracheal stenosis.

This video demonstrates the 90-degree endoscopic view in 2 patients with tracheal stenosis.

This video of a 90-degree endoscopic tracheal view was obtained from a patient with postintubation tracheal stenosis.

This video demonstrates the 90-degree endoscopic view in 2 patients with tracheal stenosis.

A tracheoesophageal fistula, which is typically caused by friction between a posteriorly displaced tracheostomy tube or overinflated cuff and a rigid nasogastric tube, almost always requires surgical repair, possibly with a muscle flap, skin graft, or both. A tracheoesophageal fistula manifests as aspiration and subsequent chemical pneumonitis and should be evaluated with a plain film (which may show an air-filled esophagus) or barium swallow, followed by bronchoscopy. Preoperative management includes gastrostomy decompression and jejunostomy nutrition. This complication occurs in less than 1% of patients with tracheostomy.

Epithelialization of the tract from skin to trachea can result in a nonhealing fistula. This can be repaired with coring out of the epithelial layer and allowance of the wound to granulate in. Alternatively, a 3-layer closure can be performed, but this is associated with more complications. A persistent tracheocutaneous fistula can indicate proximal resistance or a remaining obstruction and should be evaluated via direct laryngoscopy.

Granulation can occur at the site of the stoma and should be cauterized with silver nitrate. It can also occur distally, where it may cause partial or complete obstruction or cause this friable tissue to bleed. As granulation matures into fibrous scar, it can contribute to stenosis.

Both vertical and horizontal incisions heal with small but visible scars that can be revised if they bother the patient.

Sometimes, plugging trials or even decannulation fails for no apparent reason. Possibilities to consider include obstructing granuloma previously held out of the way with the tube, bilateral vocal cord paralysis, in fractured cartilage, and anxiety. Evaluation should include fiberoptic laryngoscopy and bronchoscopy through the stoma, with visual inspection down at the carina, up at the glottis, and then through the nose to view the hypopharynx and the supraglottis.

In 2009, Tobin proposed that the use of a tracheostomy team may reduce morbidity of this indwelling respiratory device. [21]

Percutaneous tracheostomy versus open surgical tracheostomy

Numerous articles have been published comparing several techniques of percutaneous tracheostomy with open surgical tracheostomy, as well as with one another. In general, most have shown similar complication rates.

In a meta-analysis of studies, Dulguerov et al [22] found more frequent perioperative complications in the percutaneous cohort (10% vs 3%) but more postoperative complications with the surgical approach (10% vs 7%). Also noted was a higher incidence of perioperative death (0.44 vs 0.03%) and serious cardiorespiratory events (0.33% vs 0.06%) in the percutaneous group.

Cheng and Fee [23] analyzed 4 studies showing percutaneous tracheostomy required shorter operative times (8 minutes vs 20.9 minutes), produced less intraoperative minor bleeding (9% vs 25%) and postoperative bleeding (7% vs 18%), and resulted in fewer overall postoperative complications (14% vs 60%), including stomal infection (4% vs 29%), pneumothorax (1% vs 4%), and death (0% vs 3%).

Freeman et al [24] analyzed 5 studies and found that the percutaneous method was associated with shorter operative time (absolute difference of 9.84 minutes), less perioperative bleeding, lower overall postoperative complication rate, and lower postoperative incidence of bleeding and stomal infection. No difference was identified in overall operative complications, days intubated prior to tracheostomy, or death.

Higgins and Punthakee published a meta-analysis that showed no significant difference when comparing overall complications, with a trend toward favoring percutaneous method. However, the more serious and life-threatening complication of decannulation/obstruction was more likely to occur with the percutaneous technique and false passage trended toward favoring the open procedure. Nevertheless, no significant difference was shown between the two methods in regards to death.

Prolonged intubation

Prolonged mechanical ventilation has become possible and increasingly necessary as advances have been made in the care of patients with a critical illness.

With antibiotics, total parenteral nutrition, and dialysis, current interventions allow almost indefinite support.

Complications of prolonged intubation include ulceration, granulation tissue formation, subglottic edema, and tracheal and laryngeal stenosis.

Pulmonary hygiene and oral hygiene are difficult. Communication is frustrating, and deglutition can be very difficult.

The change from an endotracheal tube to a tracheostomy tube decreases dead space by 10-50%.

Decreased resistance increases compliance and facilitates independent breathing.

The work of breathing is significantly less through a 6- to 12-cm tracheostomy tube than through a 27-cm endotracheal tube. Weaning a patient off mechanical ventilation is greatly facilitated by this decreased work of breathing. Intermittent rests on the ventilator, usually at night, are also possible.

Tracheostomy provides a more secure airway, is less likely to be displaced, and is more readily replaced than the traditional endotracheal tube.

Tracheostomy has not been demonstrated to pose a greater risk of pneumonia than intubation because both interventions lead to colonization of the airway with potential pathogens. In a study of tracheotomy in mechanically ventilated adult patients in an intensive care unit, Terragni et al found no statistically significant difference in the rates of ventilator-associated pneumonia with early tracheotomy (after 6-8 days of laryngeal intubation) versus late tracheotomy (after 13-15 days of laryngeal intubation). [25]

Timing of tracheostomy in patients who are critically ill and intubated is controversial. A large retrospective cohort analysis including nearly 11,000 critically ill patients evaluated the impact of tracheotomy timing on mortality. The authors found a slight overall improvement in survival in patients who undergo tracheotomy within the first 10 days of intubation. [26]

Pediatric patients

Indications for pediatric tracheotomy are similar to those for adults. Airway obstruction is the leading indication for tracheotomy, followed by ventilatory support and pulmonary toilet.

Studies have shown a change in the indications and outcomes of pediatric tracheotomies. Pediatric tracheotomy is more frequently performed today for chronic diseases than for acute infections such as supraglottitis, as was the case in the 1970s. This change in indications is associated with an increase in the duration of these tracheostomies and a decreased decannulation rate.

See Pediatric Tracheostomy.

How can you best minimize a patient's risk for infection during tracheostomy care?

Preventing infection with clean hands and supplies.
Wash your hands. Always wash your hands before and after any tracheostomy tube care..
Clean tracheostomy equipment. ... .
Keep your neck clean and dry. ... .
Keep your mouth clean. ... .
Clean your home equipment. ... .
Keep hands clean. ... .
Skin should not have. ... .
Supplies you will need..

What are the nursing interventions to prevent complications with tracheostomy tubes?

Apply eye protection. Perform hand hygiene, apply non-sterile gloves. Suction the oropharynx if indicated to remove any pooled secretions before cuff deflation to minimize risk of aspiration. Perform routine tracheostomy tube suction procedure.

What dressing is used for a tracheostomy?

To absorb secretions of the tracheostomy site, simple gauze, foam, or hydro fiber dressings may be used (22). Absorbent dressing foams may be maintained at the tracheostomy site for 5 to 7 days, unless they are soaked with blood or secretions.

What would be the care required for a patient with a tracheostomy?

In general, the trach tubes with an inner cannula must be cleaned regularly to prevent the buildup of dried mucus. The skin around your stoma and your neck must also be cleaned 2-3 times a day to remove dried mucus and to avoid excess moisture on your neck that can cause a rash.