Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Phương trình chính tắc của elip có hai đỉnh là \(A(5;0)\) và \(B(0;3)\) là:

Hypebol $(H):\,\,16{x^2} - 9{y^2} = 16$ có các đường tiệm cận là:

  • lý thuyết
  • trắc nghiệm
  • hỏi đáp
  • bài tập sgk

Viết phương trình đường tròn có tâm I(-1;3) và tiếp xúc với đường thẳng d: 3x - 4y + 5 = 0

Các câu hỏi tương tự

Vẽ hình liên tiếp theo các cách diễn đạt sau :

a) Vẽ đoạn thẳng AB = 2cm. Vẽ đường tròn (\(C_1\)) tâm A, bán kính AB

b) Vẽ đường tròn \(\left(C_2\right)\) tâm B, bán kính AB. Gọi các giao điểm của đường tròn này với đường tròn \(\left(C_1\right)\) là C và G

c) Vẽ đường tròn \(\left(C_3\right)\) tâm C, bán kính AC. Gọi các giao điểm  mới của đường tròn này với đường tròn \(\left(C_1\right)\) là D

d) Vẽ đường tròn \(\left(C_4\right)\) tâm D, bán kính AD. Gọi các giao điểm  mới của đường tròn này với đường tròn \(\left(C_1\right)\) là E

e) Vẽ đường tròn \(\left(C_5\right)\) tâm E, bán kính AE. Gọi các giao điểm  mới của đường tròn này với đường tròn \(\left(C_1\right)\) là F

f) Vẽ đường tròn \(\left(C_6\right)\) tâm F, bán kính AF. 

g) Vẽ đường tròn \(\left(C_7\right)\) tâm G, bán kính AG

Sau khi vẽ như trên, hãy so sánh các đoạn thẳng AB, BC, CD, DE, EF, FG, GB

VnHocTap.com giới thiệu đến các em học sinh lớp 10 bài viết Viết phương trình đường tròn, nhằm giúp các em học tốt chương trình Toán 10.

Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Nội dung bài viết Viết phương trình đường tròn: Viết phương trình đường tròn. Phương pháp giải. Cách 1: Tìm toạ độ tâm I(a; b) của đường tròn (C). Tìm bán kính R của đường tròn (C). Viết phương trình của (C) theo dạng. Cách 2: Giả sử phương trình đường tròn (C). Từ điều kiện của đề bài thành lập hệ phương trình với ba ẩn là a, b, c. Giải hệ để tìm a, b, c từ đó tìm được phương trình đường tròn (C). (C) tiếp xúc với đường thẳng A tại IA = d(I) = R. (C) tiếp xúc với hai đường thẳng A và A. Các ví dụ. Ví dụ 1: Viết phương trình đường tròn trong môi trường hợp sau: a) Có tâm I(1; -5) và đi qua O(0; 0). b) Nhận AB làm đường kính với A(1; 1), B(7; 5). c) Đi qua ba điểm: M(-2, 4), P(6; -2). Lời giải: a) Đường tròn cần tìm có bán kính là OI = 1 + 5 = V26 nên có phương trình là (x – 1) + (y + 5) = 26. b) Gọi I là trung điểm của đoạn AB suy ra (4; 3). Đường tròn cần tìm có đường kính là AB suy ra nó nhận I(4; 3) làm tâm và bán kính R = AI = 13 nên có phương trình là (1 – 4) + (y – 3) = 13. c) Gọi phương trình đường tròn (C) có dạng do đường tròn đi qua ba điểm M, N, P nên ta có hệ phương trình. Vậy phương trình đường tròn cần tìm là: a + 2 – 43 – 29 – 20 = 0. Nhận xét: Đối với ý c) ta có thể làm theo cách sau: Gọi I (c; g) và R là tâm và bán kính đường tròn cần tìm. Ví dụ 2: Viết phương trình đường tròn (C) trong các trường hợp sau: a) (C) có tâm I(-1; 2) và tiếp xúc với đường thẳng A: 1 – 2 + 7 = 0. b) (C) đi qua A(2; -1) và tiếp xúc với hai trục toạ độ Ox và Og. c) (C) có tâm nằm trên đường thẳng d: 0 – 6g – 10 = 0 và tiếp xúc với hai đường thẳng có phương trình d: 32 + 4y + 5 = 0 và d : 40 – 34 – 5 = 0. Lời giải: a) Bán kính đường tròn (C) chính là khoẳng cách từ 1 tới đường thẳng A nên phương trình đường tròn (C). b) Vì điểm A nằm ở góc phần tư thứ tư và đường tròn tiếp xúc với hai trục toạ độ nên tâm của đường tròn có dạng I(R; -3) trong đó R là bán kính đường tròn (C). Vậy có hai đường tròn thoả mãn đầu bài vì đường tròn cần tìm có tâm K nằm trên đường thẳng d nên gọi K. a) Mặt khác đường tròn tiếp xúc với d, nên khoảng cách từ tâm I đến hai đường thẳng này bằng nhau và bằng bán kính R suy ra. Vậy có hai đường tròn thỏa mãn có phương trình. Ví dụ 3: Cho hai điểm A(3; 0) và B(0; 6). a) Viết phương trình đường tròn ngoại tiếp tam giác OAB. b) Viết phương trình đường tròn nội tiếp tam giác OAB.

Lời giải: a) Ta có tam giác OAB vuông ở O nên tâm I của đường tròn ngoại tiếp tam giác là trung điểm của cạnh huyền AB suy ra bán kính R = IA = (8 – 4) + (0 – 3) = 5. Vậy phương trình đường tròn ngoại tiếp tam giác OAB là 25. b) Ta có OA = 8; OB = 6; AB mặt khác vì cùng bằng diện tích tam giác ABC dễ thấy đường tròn cần tìm có tâm thuộc góc phần tư thứ nhất và tiếp xúc với hai trục tọa độ nên tâm của đường tròn có tọa độ là (2; 2). Vậy phương trình đường tròn nội tiếp tam giác OAB là 4. Ví dụ 4: Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d: V30 + y = 0, và d. Gọi (C) là đường tròn tiếp xúc d với d’ tại A, cắt d tại hai điểm B, C sao cho tam giác ABC vuông tại B. d. Viết phương trình của (C), biết tam giác ABC có diện tích bằng và điểm A có hoành độ dương.

VnHocTap.com giới thiệu đến các em học sinh lớp 10 bài viết Lập phương trình đường tròn, nhằm giúp các em học tốt chương trình Toán 10.

Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Phương trình đường tròn có tâm tiếp xúc với đường thẳng

Nội dung bài viết Lập phương trình đường tròn: Lập phương trình đường tròn. Phương pháp giải: Cách 1. Tìm toạ độ tâm I (a; b) của đường tròn (C). Tìm bán kính R của đường tròn (C). Viết phương trình của (C) theo dạng (x − a)2 + (y − b)2 = R2. Cách 2. Giả sử phương trình đường tròn (C) là: x2 + y2 −2ax − 2by + c = 0 (hoặc x2 + y2 + 2ax + 2by + c = 0). Từ điều kiện của đề bài thiết lập hệ phương trình với ba ẩn là a, b, c. Giải hệ để tìm a, b, c, từ đó tìm được phương trình đường tròn (C). Chú ý: Cho đường tròn (C) có tâm I và bán kính R. A ∈ (C) ⇔ IA = R. (C) tiếp xúc với đường thẳng ∆ tại A ⇔ IA = d (I; ∆) = R. (C) tiếp xúc với hai đường thẳng ∆1 và ∆2 ⇔ d (I; ∆1) = d (I; ∆2) = R. (C) cắt đường thẳng ∆3 theo dây cung có độ dài a ⇔ (d (I; ∆3))2 + a2 = R2. BÀI TẬP DẠNG 2 Ví dụ 1. Lập phương trình đường tròn có tâm I(3; −5) bán kính R = 2. Lời giải. Ta có phương trình đường tròn là (x − 3)2 + (y + 5)2 = 22 ⇔ x2 + y2 − 6x + 10y + 30 = 0. Ví dụ 2. Lập phương trình đường tròn đường kính AB với A (1; 6), B (−3; 2). Đường tròn đường kính AB có: Tâm I (−1; 4) là trung điểm AB. Bán kính R = AB = 2√2. Do đó phương trình đường tròn là: (x + 1)2 + (y − 4)2 = 2√2 ⇔ x2 + y2 + 2x − 8y + 9 = 0. Ví dụ 3. Viết phương trình đường tròn (C) có tâm I (−1; 2) và tiếp xúc với đường thẳng ∆ : x − 2y + 7 = 0. Bán kính đường tròn (C) chính là khoẳng cách từ I tới đường thẳng ∆ nên R = d (I; ∆) = |−1 − 4 − 7| √1 + 4 = 2√5. Vậy phương trình đường tròn (C) là: (x + 1)2 + (y − 2)2 = 4. Ví dụ 4. Viết phương trình đường tròn tâm I (−2; 1), cắt đường thẳng ∆ : x − 2y + 3 = 0 tại hai điểm A, B thỏa mãn AB = 2. Gọi h là khoảng cách từ I đến đường thẳng ∆. Ta có: h = d (I, ∆) = |−2 − 2 + 3|. Gọi R là bán kính đường tròn. Vậy phương trình đường tròn là: (x + 2)2 + (y − 1)2 = 6. Ví dụ 5. Lập phương trình đường tròn đi qua ba điểm: M (−2; 4), N (5; 5), P (6; −2). Lời giải. Cách 1. Gọi phương trình đường tròn (C) có dạng là: x2 + y2 − 2ax − 2by + c = 0. Do đường tròn đi qua ba điểm M, N, P nên ta có hệ phương trình: 4 + 16 + 4a − 8b + c = 0, 25 + 25 − 10a − 10b + c = 0, 36 + 4 − 12a + 4b + c = 0 ⇔ a = 2, b = 1, c = −20. Vậy phương trình đường tròn cần tìm là: x2 + y2 − 4x − 2y − 20 = 0. Cách 2. Gọi I (x; y) và R là tâm và bán kính đường tròn cần tìm. Ta suy ra: IM = IN = IP ⇔ IM2 = IN2, IM2 = IP2 nên ta có hệ (x + 2)2 + (y − 4)2 = (x − 5)2 + (y − 5)2, (x + 2)2 + (y − 4)2 = (x − 6)2 + (y + 2)2 ⇔ x = 2, y = 1. Suy ra I(2; 1), bán kính IA = 5. Vậy phương trình đường tròn cần tìm (C) : (x − 2)2 + (y − 1)2 = 25. Ví dụ 6. Cho hai điểm A (8; 0) và B (0; 6). a) Viết phương trình đường tròn ngoại tiếp tam giác OAB. b) Viết phương trình đường tròn nội tiếp tam giác OAB. Lời giải. a) Ta có tam giác OAB vuông ở O nên tâm I của đường tròn ngoại tiếp tam giác là trung điểm của cạnh huyền AB suy ra I (4; 3) và bán kính R = IA = p (8 − 4)2 + (0 − 3)2 = 5. Vậy phương trình đường tròn ngoại tiếp tam giác OAB là: (x − 4)2 + (y − 3)2 = 25. b) Ta có OA = 8; OB = 6; AB = √2 + 62 = 10. Mặt khác OA.OB = pr(vì cùng bằng diện tích tam giác ABC). Suy ra r = OA.OB OA + OB + AB = 2. Dễ thấy đường tròn cần tìm có tâm thuộc góc phần tư thứ nhất và tiếp xúc với hai trục tọa độ nên tâm của đường tròn có tọa độ là (2; 2). Vậy phương trình đường tròn nội tiếp tam giác OAB là (x − 2)2 + (y − 2)2 = 4. Ví dụ 7. Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: 2x − y − 5 = 0 và hai điểm A (1; 2), B (4; 1). Viết phương trình đường tròn (C) có tâm thuộc d và đi qua hai điểm A, B. Lời giải. Cách 1. Gọi I là tâm của (C). Do I ∈ d nên I (t; 2t − 5). Hai điểm A, B cùng thuộc (C) nên IA = IB ⇔ (1 − t)2 + (7 − 2t)2 = (4 − t)2 + (6 − 2t)2 ⇔ t = 1. Suy ra I(1; −3) và bán kính R = IA = 5. Vậy phương trình đường tròn cần tìm là: (C): (x − 1)2 + (y + 3)2 = 25. Cách 2. Gọi M là trung điểm AB. Đường trung trực của đoạn AB đi qua M và nhận AB = (3; −1) làm vectơ pháp tuyến nên có phương trình ∆: 3x − y − 6 = 0. Tọa độ tâm I của (C) là nghiệm của hệ 2x − y − 5 = 0, 3x − y − 6 = 0 ⇒ I(1; −3). Bán kính của đường tròn bằng R = IA = 5. Vậy phương trình đường tròn cần tìm (C) : (x − 1)2 + (y + 3)2 = 25. Ví dụ 8. Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1: x + 3y + 8 = 0, d2: 3x − 4y + 10 = 0 và điểm A (−2; 1). Viết phương trình đường tròn (C) có tâm thuộc d1, đi qua điểm A và tiếp xúc với d2. Gọi I là tâm của (C). Do I ∈ d1 nên I (−3t − 8; t). Theo giả thiết bài toán, ta có: d (I, d2) = IA ⇔ |3 (−3t − 8) − 4t + 10| √2 + 42 = (−3t − 8 + 2)2 + (t − 1)2 ⇔ t = −3. Suy ra I(1; −3) và bán kính R = IA = 5. Vậy phương trình đường tròn cần tìm là (C): (x − 1)2 + (y + 3)2 = 25. Ví dụ 9. Viết phương trình đường tròn (C) có tâm nằm trên đường thẳng d: x − 6y − 10 = 0 và tiếp xúc với hai đường thẳng có phương trình d1: 3x + 4y + 5 = 0 và d2: 4x − 3y − 5 = 0. Vì đường tròn cần tìm có tâm K nằm trên đường thẳng d nên gọi K (6a + 10; a) Mặt khác đường tròn tiếp xúc với d1, d2 nên khoảng cách từ tâm K đến hai đường thẳng này bằng nhau và bằng bán kính R suy ra |3(6a + 10) + 4a + 5| = |4(6a + 10) − 3a − 5| ⇔ |22a + 35| = |21a + 35| ⇔ a = 0, a = −70. Với a = 0 thì K (10; 0) và R = 7 suy ra (C): (x − 10)2 + y2 = 49. Với a = −70 thì K và R. Vậy có hai đường tròn thỏa mãn có phương trình là (C): (x − 10)2 + y2 = 49. Ví dụ 10. Viết phương trình đường tròn tâm I thuộc đường thẳng d1: x − y + 1 = 0, bán kính R = 2 và cắt đường thẳng d2: 3x − 4y = 0 tại hai điểm A, B thỏa mãn AB = 2√3. Tâm I thuộc đường thẳng d1 nên suy ra I (a; a + 1). a = 1, a = −9. Với a = 1 ta có I (1; 2), phương trình đường tròn là: (x − 1)2 + (y − 2)2 = 4. Với a = −9 ta có I (−9; −8), phương trình đường tròn là: (x + 9)2 + (y + 8)2 = 4. BÀI TẬP TỰ LUYỆN Bài 1. Trong mặt phẳng với hệ tọa độ Oxy, lập phương trình đường tròn đi qua ba điểm A (−1; 3), B (1; 4), C (3; 2). Bài 2. Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : 2x − y − 4 = 0. Viết phương trình đường tròn (C) tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng d. Bài 3. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A (−1; 1), B (3; 3) và đường thẳng d: 3x − 4y + 8 = 0. Viết phương trình đường tròn (C) đi qua hai điểm A, B và tiếp xúc với d. Đường trung trực ∆ đi qua M (1; 2) là trung điểm AB và nhận AB = (4; 2) làm vectơ pháp tuyến nên có phương trình ∆: 2x + y − 4 = 0. Do (C) đi qua hai điểm A, B nên tâm I của (C) thuộc trung trực ∆ nên I (t; 4 − 2t). Bài 4. Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d: x + 2y − 3 = 0 và ∆: x + 3y − 5 = 0. Viết phương trình đường tròn (C) có bán kính bằng 2√10, có tâm thuộc d và tiếp xúc với ∆.

Bài 5. Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: √3x + y = 0. và d2: √3x − y = 0. Gọi (C) là đường tròn tiếp xúc với d1 tại A, cắt d2 tại hai điểm B, C sao cho tam giác ABC vuông tại B. Viết phương trình của (C), biết tam giác ABC có diện tích bằng √3 và điểm A có hoành độ dương.Bài 6. Cho ba đường thẳng d1: x−y + 1 = 0, d2: 3x−4y = 0, d3: 4x−3y −3 = 0. Viết phương trình đường tròn tâm I thuộc đường thẳng d1, cắt đường thẳng d2 tại hai điểm A, B và cắt đường thẳng d3 tại hai điểm C, D sao cho AB = CD = 2√3.