The cyclic AMP signaling pathway: exploring targets for successful drug discovery (review)

Language: Spanish
References: 104
Page: 766-780
PDF size: 346.64 Kb.

For years, much of the advances in medicine and pharmacology have focused on the study of intracellular signaling pathways, giving into a better understanding of the pathologies and formulation of new therapeutic and diagnostic options. This article seeks to provide a synthetic and practical explanation about the function of the main intracellular signaling pathways, exemplifying the importance of each of these through the pathophysiological explanation of various diseases in which there is a prominent role. Among the signaling pathways treated in this work are those activated by protein kinase A (PKA), protein kinase C (PKC), phosphatodylinositol- 3-kinase (PI3K), Ca2+/ calmodulin-dependent protein kinase (CaMK), the tyrosine kinase (TK) family, the Ras superfamily, as well as the MAPK pathway. In addition, other components of importance for signaling pathways are addressed, such as the ubiquitin-proteosome system, integrins, as well as cyclins, cyclin-dependent kinases (CDK) and other cell cycle regulators. Some of the diseases treated within the text are diabetes mellitus, Alzheimer�s and Parkinson�s disease, various cardiac arrhythmias, cancer, pulmonary fibrosis, nephrotic syndrome, etc., which are diseases of great relevance in current medicine.

  • Krauss G. Biochemistry of signal transduction and regulation. 3� ed. Germany: Wiley-VCH Verlag, 2003.

  • Sitaramayya A. Signal transduction: Pathways, mechanisms and diseases. 1� ed. Heidelberg: Springer, 2010. DOI. 10.1007/978-3-642-02112-1.

  • Moosavi A, Ardekani AM. Role of epigenetics in biology and human diseases. Iran Biomed J 2016; 20 (5): 246-258. doi: 10.22045/ibj.2016.01.

  • Johnson DE. The ubiquitin-proteasome system: opportunities for therapeutic intervention in solid tumors. Endocr Relat Cancer 2015; 22 (1): T1-T17. doi: 10.1530/ERC-14-0005.

  • Massaly N, Frances B, Mouledous L. Roles of the ubiquitin proteasome system in the effects of drugs of abuse. Front Mol Neurosci 2015; 7: DOI: 10.3389/fnmol.2014.00099.

  • Chowdhury M, Enenkel C. Intracellular dynamics of the ubiquitin-proteasome-system. F1000Res 2015; 4: 367. doi: 10.12688/f1000research.6835.2.

  • Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, et al. The ubiquitin proteasomal system: a potential target for the management of Alzheimer�s disease. J Cell Mol Med 2016; 20 (7): 1392-1407. doi: 10.1111/ jcmm.12817.

  • Martin J, Anamika K, Srinivasan N. Classification of protein kinases on the basis of both kinase and non-kinase regions. PLoS One (2010); 5 (9): e12460. doi: 10.1371/journal. pone.0012460.

  • Cheng HC, Qi RZ, Paudel H, Zhu HJ. Regulation and function of protein kinases and phosphatases. Enzyme Res 2011; 794089. doi: 10.4061/2011/794089.

  • Martin J, Anamika K, Srinivasan N. Classification of protein kinases on the basis of both kinase and non-kinase regions. PLoS One 2010; 5 (9): e12460. doi: 10.1371/journal. pone.0012460.

  • Yanauchi T. Neuronal Ca2+/calmodulin-dependent Protein Kinase II - Discovery, progress in a quarter of century, and perspective: Implication for learning and memory. Biol Pharm Bull 2005; 28 (8): 1342-1354. doi: 10.1248/bpb.28.1342.

  • Modi V, Dunbrack RL. Defining a new nomenclature for the structures of active and inactive kinases. PNAS 2019; 116 (14): 6818-6827. doi: 10.1073/pnas.1814279116.

  • Hunzicker M, Maizels ET. FSH signaling pathways in immature granulosa cells that regulate target gene expression: Branching out from protein kinase A. Cell Signal 2006; 18 (9): 1351-1359. doi: 10.1016/j.cellsig.2006.02.011.

  • Costa R, Reis RI, Aguiar JF, Varanda WA. Luteinizing hormone (LH) acts through PKA and PKC to modulate t-type calcium currents and intracelular calcium transients in mice Leydig cell. Cell Calcium 2011; 49 (3): 191-199. doi: 10.1016/j.ceca.2011.02.003.

  • Kim TJ, Sun J, Lu S, Zhang J, Wang Y. The regulation of B-adrenergic receptor-mediated PKA activation by substrate stiffness via microtubule dynamics in human MSCs. Biomaterials 2014; 35 (29): 8348-8356. doi: 10.1016/j. biomaterials.2014.06.018.

  • Nomura S, Bouhadana M, Morel C, Faure P, Cauli B, Lambolez B, et al. Noradrenalin and dopamine receptors both control cAMP-PKA signaling throughout the cerebral cortex. Front Cell Neurosci 2014; 8. doi: 10.3389/ fncel.2014.00247.

  • Sach D, Villarreal CF, Cunha FQ, Parada CA, Ferreira SH. The role of PKA and PKC pathways in prostaglandin E2- mediated hypernociception 2009; 156 (5): 826-834. doi: 10.1111/j.1476-5381.2008.00093.x.

  • Cadagan D. Mechanisms of Luteinizing Hormone regulation in female steroidogenesis. Austin Gynecology Case Reports 2017; 2(1): 1008.

  • Yan K, Gao LN, Cui YL, Zhang Y, Zhou X. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). Mol Med Rep 2016; 13 (5): 3715-3723. doi: 10.3892/mmr.2016.5005.

  • Leroy J, Vandecasteele G, Fishmeister R. Cyclic AMP signaling in cardiac myocytes. Curr Opin Physiol 2018; 1: 121-171. DOI: 10.1016/j.cophys.2017.11.004.

  • Han YS, Arroyo J, Ogut O. Human heart failure is accompanied by altered protein kinase A subunit expression and post-traslational state. Arch Biochem Biophys 2013; 538 (1): 25-33. doi: 10.1016/j.abb.2013.08.002.

  • Keil MF, Briassoulis G, Stratakis CA. The role of protein kinase A in anxiety behaviors. Neuroendocrinology 2016; 103: 625-639. doi: 10.1159/000444880.

  • Bockus LB, Humphries KM. cAMP-dependent Protein Kinase (PKA) signaling is impaired in the diabetic heart. J Biol Chem 2015; 290 (49): 29250-29258. doi: 10.1074/ jbc.M115.681767.

  • Wu-Zhang AX, Newton AC. Protein kinase C pharmacology: redifining the toolbox. Biochem J 2013; 452: 195-209. doi: 10.1042/BJ20130220.

  • Yang D, Guo J, Divieti P, Bringhurst FR. Parathyroid hormone activates PKC-d and regulates osteoblastic differentiation via a PLC-independent pathway. Bone 2006; 38 (4): 485- 496. doi: 10.1016/j.bone.2005.10.009.

  • Oliva JL, Griner EM, Kazanietz MG. PKC isozymes and diacylglycerol-regulated proteins as effectors of growth factor receptors. Growth Factors 2005; 23 (4): 245-252. doi: 10.1080/08977190500366043.

  • Monczor F, Fernandez N. Current knoledge and perspectives on histamine H1 and H2 receptor pharmacology: Functional selectivity, receptor crosstalk, and repositioning of classic histaminergic ligands. Mol Pharmacol 2016; 90: 640-648. doi: 10.1124/mol.116.105981.

  • Lei B, Schwinn DA, Morris DP. Stimulation od α1a adrenergic receptors induces celular proliferetion or antiproliferative hypertrophy dependent solely on agonist concentration. PLoS One 2013; 8 (8): e72430. doi: 10.1371/ journal.pone.0072430.

  • Kim JY, Scaffen D. Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centre don TRPC6 channels. J Biol Chem 2005; 280 (36): 32035-32047. doi: 10.1074/jbc.M500429200.

  • New DC, Wong YH. Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal 2007; 2-2. doi: 10.1186/1750-2187-2-2.

  • Callender JA, Newton AC. Conventional protein kinase C in the brain: 40 years later. Neuronal Signaling 2017; 1: NS20160005. doi: 10.1042/NS20160005.

  • Nasser MW, Marjoram RJ, Brown SL, Richardson RM. Crossdesensitization among CXCR1, CXCR2, and CCR5: Role of Protein Kinase C-ε. J Immunol 2005; 174 (11): 6927-6933. doi: 10.4049/jimmunol.174.11.6927.

  • Loegering DJ, Lennartz MR. Protein Kinase C and Toll- Like Receptor signaling. Enzyme Res 2011; 537821. doi: 10.4061/2011/537821.

  • Xu X, Jin T. The novel function of the PLC/PKC/PKD signaling axis in G protein-coupled receptor-mediated chemotaxis of neutrophils. J Immunol Res 2015: 817604.2015; 817604. doi: 10.1155/2015/817604.

  • Isakov N, Altman A. Regulation of Immune system cell function by Protein Kinase C. Front Immunol 2013; 4: 384. doi: 10.3389/fimmu.2013.00384.

  • Tabit CE, Shenouda SM, Holbrook M, Fetterman JL, Kiani S, Frame AA, et al. Protein Kinase C-β contributes to impaired endotelial insulin signaling in human with Diabetes Mellitus. Circulation 2012; 127 (1): 86-95. doi: 10.1161/ CIRCULATIONAHA.112.127514.

  • Kizub IV, Klymenko KI, Soloviev AI. Protein Kinase C in enhanced vascular tone in diabetes mellitus. Int J Cardiol 2014; 174 (2): 230-242. doi: 10.1016/j.ijcard.2014.04.117.

  • Liang Y. Pathogenesis of chronic hyperglycemia: From reductive stress to oxidative stress. J Diabetes Res 2014; 137919. doi: 10.1155/2014/137919.

  • Cooke M, Magimaidas A, Casado V, Kazanietz MG. Protein kinase C in cancer: the top five unanswered questions. Mol Carcinog 2017; 56 (6): 1531-1542. doi: 10.1002/mc.22617.

  • Gomperts BD, Kramer IM, Tatham PER. Signal Transduction. 2� ed. United Kingdom: Elsevier, 2009.

  • Mustroph J, Neef S, Maier LS. CaMKII as a target for arrhythmia suppresion. Pharmacol Ther 2016; 176: 22-31. doi: 10.1016/j.pharmthera.2016.10.006.

  • Liu X, Yao M, Wang C, Zheng Y, Cao X. CaMKII promotes TLR-triggered proinflamatory cytokine and type I interfer�n producction by directly binding and activating TAK1 and IRF3 in macrophages. Blood 2008; 112 (13): 4961-4970. doi: 10.1182/blood-2008-03-144022.

  • Wei Z, Feng Q, Dong-Qin C, Wen-Yan X, Jing W, Wei-Zhong Z. Ca2+/calmodulin-dependent protein kinase IIδ orchestates G-protein-coupled receptor and electric field stimulation-induced cerdiomyocyte hypertrophy. Clin Exp Pharmacol Physiol 2010; 37: 795-802. doi: 10.1111/j.1440-1681.2010.05382.x.

  • Park IK, Soderling TR. Activation of Ca2+/calmodulindependent protein kinase (CaM-kinase) IV by CaM-kinase kinase in Jurkat T lymphocytes. J Biol Chem 1995; 270: 30464-30469. doi: 10.1074/jbc.270.51.30464.

  • Steinkellner T, Yang JW, Montgomery TR, Chen WQ, Winkler MT, Sucic S, et al. Ca2+/calmodulin-dependent Protein Kinase IIα (αCaMKII) controls the activity of dopamine transporter. J Biol Chem 2012; 287 (35): 29627-2963. doi: 10.1074/jbc.M112.367219.

  • Naz H, Asimul I, Faizan A, Imtaiyaz H. Calcium/calmodulindependent protein kinase IV: A multifuntional enzyme and potential therapeutic target. Prog Biopgys Mol Biol 2016; 1-12. doi: 10.1016/j.pbiomolbio.2015.12.016.

  • Hell JW. CaMKII: Claming center stage in postsynaptic function and organization. Neuron 2014; 81 (2): 249-265. doi: 10.1016/j.neuron.2013.12.024.

  • Gu R, Ding M, Shi D, Huang T, Guo M, Yu L, et al. Calcium/ calmodulin-dependent Protein Kinase IV mediates INF-ϒ-induced immune behaviors in skeletal muscle cells. Cell Physiol Biochem. (2018); 46: 315-364. doi: 10.1159/000488435.

  • Racioppi L, Means AR. Calcium/calmodulin-dependent Protein Kinase Kinase 2: Roles in signaling and pathopgysiology. J Biol Chem 2012; 287 (38): 31658-31665. doi: 10.1074/jbc.R112.356485.

  • Ozcan L, Wong CCL, Li G, Xu T, Pajvani U, Park SKR, Wronska A, et al. Calcium signaling through CAMKII regulates hepatic glucose production in fasting and obesity. Cell Metab 2012; 15 (5): 739-751. doi: 10.1016/j.cmet.2012.03.002.

  • Joseph JS, Ayeleso OA, Mukwevho E. Role of excerciseinduced Calmodulin Protein Kinase (CaMK)II activation in the reglulation of omega-6 fatty acids and lipid metabolism genes in rat skeletal muscle. Physiol Res 2017; 66: 969-977. doi: 10.33549/physiolres.933509.

  • Song YH. A memory molecule, Ca2+/calmodulon-dependent Protein Kinase II and redox stress; key factors for arrhythmias in a diseased heart. Korean Circ J 2013; 43 (3): 145-151. doi: 10.4070/kcj.2013.43.3.145.

  • Hund TJ, Mohler PJ. Role of CaMKII in cardiac arrhythmias. Trends Cardiovasc Med 2015; 25 (5): 392-397. doi: 10.1016/j.tcm.2014.12.001.

  • Wang F. The signaling mechanisms underlying cell polarity and chemotaxis. Cold Spring Harb Perspect Biol 2009; 1 (4): a002980. doi: 10.1101/cshperspect.a002980.

  • New DC, Wong YH. Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal 2007; 2-2. doi: 10.1186/1750-2187-2-2.

  • Nakano N, Matsuda S, Ichimura M, Minami A, Ogino M, Murai T. PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson�s disease (Review). Int J Mol Med 2017; 39 (2): 253-260. doi: 10.3892/ijmm.2016.2833.

  • Li HY, Zhang QG, Chen JW, Chen SQ, Chen SY. The fibrotic role of phosphatidylinositol-3-kinase/Akt pathway in injured skeletal muscle after acute contusion. Int J Spots Med 2013; 34(9): 789-794. doi: 10.1055/s-0032-1333284.

  • Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev 2016; 31: 61-71. doi: 10.1016/j.cytogfr.2016.08.002.

  • Abraham RT. Chemokine to the rescue: Interleukin-8 mediates resistence to PI3K-pathway-targeted therapy in breast cancer. Cancer Cell 2012; 22 (11): 703-705. oi: 10.1016/j.ccr.2012.11.012.

  • Bognar E. The critical role of MAP-kinases and PI3K-Akt signaling pathways in inflammation and oxidative stress. PhD [dissertation]. Hungary: University of P�cs; 2013.

  • Vivanco I, Sawyers CL. The phosphatidylinositol-3-kinase- Akt pathwat in human cancer. Nat Rev Cancer 2002; 2 (7): 489-501. doi: 10.1038/nrc839.

  • Law NC, White MF, Hunzicker-Dunn ME. G protein-coupled receptors (GPCRs) that signal via protein kinase A (PKA) cross-talk at insulin receptor substrate 1 (IRS1) to activate the PI3K/AKT pathway. J Biol Chem 2016; 291 (53): 27160- 27169. doi: 10.1074/jbc.M116.763235.

  • Lawrence J, Nho R. The role of the mammalian target of rapamycin (mTOR) in pulmonary fibrosis. Int J Mol Sci 2018; 19 (778). doi: 10.3390/ijms19030778.

  • Zhao W, Qiu Y, Kong D. Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Acta Pharm Sin B 2017; 7 (1): 27-37. doi: 10.1016/j.apsb.2016.07.006.

  • Bartok B, Hammaker D, Firestein GS. Phosphoinositide 3-Kinase δ regulates migration and invasion of synoviocytes in rheumatoid arthritis. J Immunol 2014; 192 (5): 2063-2070. doi: 10.4049/jimmunol.1300950.

  • S�galiny AI, Tellez M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancer. J Bone Oncol 2015; 4 (1): 1-12. doi: 10.1016/j.jbo.2015.01.001.

  • Pathi N, Viswanath S, Pathak A, Rathore A, Prukayastha A. Receptor tyrosine kinase signaling pathways: a review. Int J Adv in Medicine 2016; 3 (4): 783-789. DOI:10.18203/2349- 3933.ijam20163714.

  • Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 2018; 17: 58. doi: 10.1186/ s12943-018-0782-4.

  • Jeltsch M, Leppanen VM, Saharinen P, Alitalo K. Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harb Perspect Biol 2013; 5 (9): a009183. doi: 10.1101/cshperspect. a009183.

  • Rojas AM, Fuentes G, Rausell A, Valencia A. The ras protein superfamily: Evolutionary tree and role of conserved amino acids. J Cell Biol 2012; 196 (2): 189. doi: 10.1083/ jcb.201103008.

  • Matsumoto S, Miyano N, Baba S, Liao J, Kawamura T, Tsuda C, et al. Molecular mechanism for conformational dynamics of Ras-GTP eludidated from in-situ structural transition in cristal. Sci Rep 2016; 6: 25931. doi: 10.1038/srep25931.

  • Simanshu DK, Nissley DV, McCormick F. RAS Proteins and their regulators in human disease Cell 2017; 170 (1): 17-33. doi: 10.1016/j.cell.2017.06.009.

  • Robins R, Takano T. Rho-GTPase signalling in the pathogenesis of nephrotic syndome. Advances in Nephrology 2014; 1-11. doi.org/10.1155/2014/903158.

  • Zhen Y, Stenmark H. Cellular functions of Rab GTPases at a glance. J Cell Sci 2015; 128 (17): 3171-3176. doi: 10.1242/ jcs.166074.

  • Seixas E, Barros M, Seabra MC, Barral DC. Rab and Arf in genetic diseases. Traffic 2013; 14 (8): 871-885. doi: 10.1111/tra.12072.

  • Lu S, Jang H, Nussinov R, Zhang J. The estructural basis of oncogenic mutation G12, G13, and Q61 in small GTPase K-Ras4B. Sci Rep 2016; 6: 21949. doi: 10.1038/srep21949.

  • Danen EHJ. Integrin signaling as a cancer drug target. ISRN Cell Biol 2013; 1-14. http://dx.doi. org/10.1155/2013/135164.

  • Kiral FR, Kohrs FE, Jin EJ, Hiesinger PR. Rab GTPases and membrane trafficking in neurodegeneration. Cu rrent Biology 2018; 28 (8): R471-R486. doi: 10.1016/j. cub.2018.02.010.

  • Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol 2015; 89 (6): 867-882. doi: 10.1007/s00204-015-1472-2.

  • Whitmarsh AJ. Regulation of gene transcription by mitogen- activated protein kinase signaling pathways. Biochim Biophys Acta 2007; 1773 (8): 1285-1298. doi: 10.1016/j. bbamcr.2006.11.011.

  • Yang Y, Kim SC, Yu T, Yi YS, Rhee MH, Sung GH, et al. Functional roles of p38 Mitogen-Activated Protein Kinase in macrophage-mediated inflamatory responses. Mediators Inflamm 2014: 352371. doi: 10.1155/2014/352371.

  • Darling NJ, Cook SJ. The role of MAPK signallin pathways in the response to endoplasmic reticulim stress. Biochim Biophys Acta 2014; 1843 (10): 2150-2163. doi: 10.1016/j. bbamcr.2014.01.009.

  • Moens U, Kostenko S, Sveinbjornsson B. The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes (Basel). 2013; 4 (2): 101-133. doi: 10.3390/genes4020101.

  • Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 2013; 140 (15): 3079-3093. doi: 10.1242/dev.091744.

  • Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol 2005; 6 (5): P322-327. doi: 10.1016/S1470-2045(05)70168-6.

  • Geisler HWS, Shi H, Gerrard DE. MAPK pathway in skeletal muscle diseases. J Vet Sci Anim Husb 2013; 1 (1): e104.

  • Bhinge A, Namboori SC, Zhang X, VanDongen AMJ, Stanton LW. Genetic correction of SOD1 mutant iPSCs reveals ERK and JNK activated AP1 as a driver of neurodegeneration in amyotrophic lateral sclerosis. Stem Cell Rep 2017; 8 (4): 856-869. doi: 10.1016/j.stemcr.2017.02.019.

  • Nakaya T, Maragkakis M. Amyotrophic lateral sclerosis associated FUS mutation shortens mitocondria and induces neurotoxicity. Sci Rep 2018; 8: 15575. doi: 10.1038/ s41598-018-33964-0.

  • Sama RRK, Fallini C, Gatto R, McKeon JE, Song Y, Rotunno MS, et al. ALS.linked FUS exerts a gain of toxic function involving aberrant p38 MAPK activation. Sci Rep 2017;7 (1): 115. doi: 10.1038/s41598-017-00091-1.

  • Perri F, Pisconti S, Scarpati GDV. P53 mutations and cancer: a tight linkage. Ann Transl Med 2016; 4 (24): 522. doi: 10.21037/atm.2016.12.40.

  • Maruyama H, Yasui T, Ishikawa T, Morii E, Yamamoto Y, Yoshii T, et al. Human papillomavirus and p53 mutation in head and neck squamous cell carcinoma among Japanese population. Cancer Sci 2014; 105 (4): 409-417. doi: 10.1111/cas.12369.

  • Hong A, Zhang X, Jones D, Veilard AS, Zhang M, Martin A, et al. Relationship between p53 mutation, HPV status and outcome in oropharyngeal squamous cell carcinoma. Radiother Oncol 2016; 118 (2): 342-349. doi: 10.1016/j. radonc.2016.02.009.

  • Ruttkay-Nedecky B, Jimenez AM, Nejd L, Chudobova D, Gumulec J, Masarik M, et al. Relevance of infection with human papillomavirus: The role of the p53 tumor suppressor protein and E6/E7 zinc finger proteins (Review). Int J Oncol 2013; 43 (6): 1754-1762. doi: 10.3892/ ijo.2013.2105.

  • Mueller PAJ, Vousden KH. p53 mutation in cancer. Nat Cell Biol 2013; 15 (1): 2-8. doi: 10.1038/ncb2641.

  • Yue X, Zhao Y, Xu Y, Zheng M, Feng Z, Hu W. Mutant p53 in cancer: accumulation, gain-of-function and therapy. J Mol Biol 2017; 429 (11): 1595-1606. doi: 10.1016/j. jmb.2017.03.030.

  • Teoh CM, Tan SSL, Tran T. Integrins as therapeutic targets for respiratory diseases. Curr Mol Med 2015; 15 (8): 714-734. doi: 10.2174/1566524015666150921105339.

  • Katsumoto TR, Violette SM, Sheppard D. Blocking TGFβ via inhibition of the αvβ6 integrin: A posible therapy for systemic sclerosis intertitial lung disease. 2011; 208219. doi: 10.1155/2011/208219.

  • Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 2015; 25 (4): 234-240. doi: 10.1016/j.tcb.2014.12.006.

  • Stark AK, Sriskantharajah S, Hessel EM, Okkenhaug K. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr Opin Pharmacol 2015; 23: 83-91. doi: 10.1016/j. coph.2015.05.017.

  • Saxena A, Scaini G, Bavaresco DV, Leite C, Valvassoria SS, Carvalho AF, Quevedo J. Role of Protein Kinase C in bipolar disorder: A review of the current literature. Mol Neuropsychiatry 2017; 3: 108-124.

  • Hamidi H, Pietila M, Ivaska J. The complexity of integrins in cancer and scopes for therapeutic targeting. Br J Cancer 2016; 115 (9): 1017-1023.

  • Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer 2018; 18: 533-548. doi: 10.1038/s41568-018-0038-z.

  • Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-Terminal Kinases. Microbiol Mol Biol Rev 2006; 70 (4): 1061-1095. doi: 10.1128/ MMBR.00025-06.

  • Ball J, Archer S, Ward S. PI3K inhibitors as potential therapeutics for autoimmune disease. Drug Discov Today 2014; 19 (8): 1195-1199. doi: 10.1016/j.drudis.2014.04.002.

  • What is the cAMP signaling pathway?

    Adenosine 3′,5′-cyclic monophosphate (cAMP) is a nucleotide that acts as a key second messenger in numerous signal transduction pathways. cAMP regulates various cellular functions, including cell growth and differentiation, gene transcription and protein expression.

    What is cyclic AMP used for?

    Cyclic AMP is involved in the regulation of glycogen, sugar, and lipid metabolism. Cyclic AMP may affect brain function in many ways. In some cases, increase in levels of cAMP may result in an increase in the production of a neurotransmitter, contributing to an agonist effect.

    What does cAMP do in the body?

    Signals like cAMP are generated inside cells in response to certain types of external events that are detected at the cell surface. cAMP acts as a cellular messenger that relays the external events to the correct location within the cell to initiate the required action.

    How does cyclic AMP act as a second messenger?

    Cyclic AMP (cAMP) is an intracellular second messenger to a wide variety of hormones and neurotransmitters. In T cells, elevated cAMP levels antagonize T cell activation by inhibiting T cell proliferation and by suppressing the production of IL-2 and IFN-γ.