Bài tập 1 sgk toán 11 trang 17 năm 2024

Bài giải bài tập trang 17, 18 SGK Đại Số và Giải Tích 11 Bài 1, 2, 3, 4, 5, 6, 7, 8 - Hàm số lượng giác là bài mở đầu cho chương trình học toán lớp 11, bài học này bao gồm đầy đủ những nội dung kiến thức hữu ích về hàm số lượng giác, cùng với những hướng dẫn giải toán lớp 11 khá cụ thể và rõ ràng, mời các bạn cùng theo dõi và ứng dụng cho nhu cầu học tập tốt nhất

Bài viết liên quan

  • Giải Bài 1 Trang 17, 18 SGK Toán 4
  • Giải Bài 2 Trang 17, 18 SGK Toán 4
  • Giải Bài 3 Trang 17, 18 SGK Toán 4
  • Giải Bài 5 Trang 17, 18 SGK Toán 4
  • Giải Bài 4 Trang 17, 18 SGK Toán 4

\=> Tham khảo Giải toán lớp 11 tại đây: Giải Toán lớp 11

Bài tập 1 sgk toán 11 trang 17 năm 2024

Bài tập 1 sgk toán 11 trang 17 năm 2024

Bài tập 1 sgk toán 11 trang 17 năm 2024

Bài tập 1 sgk toán 11 trang 17 năm 2024

Bài tập 1 sgk toán 11 trang 17 năm 2024

Bài tập 1 sgk toán 11 trang 17 năm 2024

Giải câu 1 đến 8 trang 17, 18 SGK môn Toán lớp 11

- Giải câu 1 trang 17 SGK Toán lớp 11

- Giải câu 2 trang 17 SGK Toán lớp 11

- Giải câu 3 trang 17 SGK Toán lớp 11

- Giải câu 4 trang 17 SGK Toán lớp 11

- Giải câu 5 trang 17 SGK Toán lớp 11

- Giải câu 6 trang 17 SGK Toán lớp 11

- Giải câu 7 trang 18 SGK Toán lớp 11

- Giải câu 8 trang 18 SGK Toán lớp 11

Hàm số lượng giác được trình bày như thế nào bao gồm những dạng hàm số nào, để biết rõ điều này các bạn học sinh có thể tham khảo chi tiết kiến thức lý thuyết tổng hợp trong Giải Toán 11 trang 17, 18 SGK - Hàm số lượng giác. Với 4 hàm số lượng giác cùng với các nhận xét hay công thức minh họa cụ thể chắc chắc hỗ trợ quá trình ôn luyện và ghi nhớ của các em học sinh tốt nhất. Cùng với đó hệ thống bài giải hướng dẫn làm bài tập chi tiết cũng được cập nhật khá đầy đủ giúp việc giải toán lớp 10 câu 1 đến 8 cụ thể và rõ ràng hơn.

Bài hướng dẫn Giải bài tập trang 17, 18 SGK Đại Số và Giải Tích 11 trong mục giải bài tập toán lớp 11. Các em học sinh có thể xem lại phần Giải bài tập trang 15 SGK Hình học 11 đã được giải trong bài trước hoặc xem trước hướng dẫn Giải bài tập trang 19 SGK Hình học 11 để học tốt môn Toán lớp 11 hơn.

Là một nội dung quan trọng trong chương trình toán lớp 11, hãy theo dõi phần Giải Toán 11 trang 36, 37 của Bài 3. Một số phương trình lượng giác thường gặp để nâng cao kiến thức Toán lớp 11 của mình.

Bên cạnh nội dung các em đã được hướng dẫn ở trên, phần Giải Toán 11 trang 46 của Bài 1. Quy tắc đếm để học tốt Toán 11.

Thư viện Đại Học Sư phạm Kỹ thuật - TP.HCM

Số 1 Võ Văn Ngân, Phường Linh Chiểu, Tp. Thủ Đức, Tp. Hồ Chí Minh, Việt Nam ĐT: (+84 028) 3896 9920 - (+84 028) 3722 1223 EXT 8222 Email: [email protected], [email protected]

Hãy xác định các giá trị của \(x\) trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) để hàm số \(y = tanx\) ;

  1. Nhận giá trị bằng \(0\) ;
  1. Nhận giá trị bằng \(1\) ;
  1. Nhận giá trị dương ;
  1. Nhận giá trị âm.

Đáp án :

  1. trục hoành cắt đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) tại ba điểm có hoành độ - π ; 0 ; π. Do đó trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) chỉ có ba giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị bằng \(0\), đó là \(x = - π; x = 0 ; x = π\).
  1. Đường thẳng \(y = 1\) cắt đoạn đồ thị \(y = tanx\) (ứng với \(x\in\)\(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) tại ba điểm có hoành độ \({\pi \over 4};{\pi \over 4} \pm \pi \) . Do đó trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) chỉ có ba giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị bằng \(1\), đó là \(x = - {{3\pi } \over 4};\,\,x = {\pi \over 4};\,\,x = {{5\pi } \over 4}\).
  1. Phần phía trên trục hoành của đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) gồm các điểm của đồ thị có hoành độ truộc một trong các khoảng \(\left( { - \pi ; - {\pi \over 2}} \right)\); \(\left( {0;{\pi \over 2}} \right)\); \(\left( {\pi ;{{3\pi } \over 2}} \right)\). Vậy trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) , các giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị dương là \(x \in \left( { - \pi ; - {\pi \over 2}} \right) \cup \left( {0;{\pi \over 2}} \right) \cup \left( {\pi ;{{3\pi } \over 2}} \right)\).
  1. Phần phía dưới trục hoành của đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) gồm các điểm của đồ thị có hoành độ thuộc một trong các khoảng \(\left( { - {\pi \over 2};0} \right),\left( {{\pi \over 2};\pi } \right)\). Vậy trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) , các giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị âm là \(x \in \left( { - {\pi \over 2};0} \right),\left( {{\pi \over 2};\pi } \right)\)

Bài 2 trang 17 sgk giải tích 11

Tìm tập xác định của các hàm số:

  1. \(y=\frac{1+cosx}{sinx}\) ;
  1. \(y=\sqrt{\frac{1+cosx}{1-cosx}}\) ;
  1. \(y=tan(x-\frac{\pi }{3})\) ;
  1. \( y=cot(x+\frac{\pi }{6})\) .

Giải:

Câu a:

Hàm số \(y=\frac{1+cosx}{sinx}\) xác định khi \(sinx\neq 0\Leftrightarrow x \neq k \pi,k\in \mathbb{Z}\)

Vậy tập xác định của hàm số là \(D=\mathbb{R} \setminus \left \{ k \pi,k\in \mathbb{Z} \right \}\)

Câu b:

Hàm số \(y=\sqrt{\frac{1+cosx}{1-cosx}}\) xác định khi \(\left\{\begin{matrix} \frac{1+cosx}{1-cosx}\geq 0\\ \\ 1-cosx\neq 0 \end{matrix}\right.\)

\(\Leftrightarrow 1-cosx> 0(do \ \ 1+cosx\geq 0)\)

\(\Leftrightarrow cosx\neq 1 \Leftrightarrow x \neq k2 \pi,k\in \mathbb{Z}\)

Vậy tập xác định của hàm số là \(D=\mathbb{R} \setminus \left \{ k 2 \pi,k\in \mathbb{Z} \right \}\)

Câu c:

Hàm số xác định khi \(cos\left ( x-\frac{\pi }{3} \right )\neq 0\) xác định khi:\(x-\frac{\pi }{3}\neq \frac{\pi }{2}+k\pi \Leftrightarrow x\neq \frac{5\pi }{6}+k\pi (k\in Z)\)

Vậy tập xác định của hàm số \(D=\mathbb{R} \setminus \left \{ \frac{5\pi }{6}+k \pi ,k\in Z \right \}\)

Câu d:

Hàm số xác định khi \(sin \left ( x+\frac{\pi }{6} \right )\neq 0\) xác định khi \(x+\frac{\pi }{6}\neq k\pi \Leftrightarrow x\neq -\frac{\pi }{6}+k\pi,k\in Z\)

Vậy tập xác định của hàm số là \(D=\mathbb{R} \setminus \left \{ \frac{\pi }{6}+k \pi ,k\in Z \right \}\)


Bài 3 trang 17 sgk giải tích 11

Dựa vào đồ thị hàm số \(y = sinx\), hãy vẽ đồ thị của hàm số \(y = |sinx|\).

Giải

Ta có

\(\left| {{\mathop{\rm s}\nolimits} {\rm{inx}}} \right| = \left\{ \matrix{ {\mathop{\rm s}\nolimits} {\rm{inx}},{\mathop{\rm s}\nolimits} {\rm{inx}} \ge {\rm{0}} \hfill \cr {\rm{ - sinx}},{\mathop{\rm s}\nolimits} {\rm{inx}} \le 0 \hfill \cr} \right.\)

Mà \(sinx < 0\) \(⇔ x ∈ (π + k2π , 2π + k2π), k ∈ Z\) nên lấy đối xứng qua trục \(Ox\) phần đồ thị của hàm số \(y = sinx\) trên các khoảng này còn giữ nguyên phần đồ thị hàm số \(y = sinx\) trên các đoạn còn lại ta được đồ thị của hàm số \(y = |sinx|\)

Bài tập 1 sgk toán 11 trang 17 năm 2024


Bài 4 trang 17 sgk giải tích 11

Chứng minh rằng \(sin2(x + kπ) = sin 2x\) với mọi số nguyên \(k\). Từ đó vẽ đồ thị hàm số \(y = sin2x\).

Đáp án :

Do \(sin (t + k2π)\) = \(sint\), \(\forall k \in Z\) (tính tuần hoàn của hàm số f\((t) = sint)\), từ đó

\(sin(2π + k2π) = sin2x \Rightarrow sin2(tx+ kπ) = sin2x\), \(∀k ∈ Z\).

Do tính chất trên, để vẽ đồ thị của hàm số \(y = sin2x\), chỉ cần vẽ đồ thị của hàm số này trên một đoạn có độ dài \(π\) (đoạn \(\left[ { - {\pi \over 2};{\pi \over 2}} \right]\) Chẳng hạn), rồi lại tịnh tiến dọc theo trục hoành sang bên phải và bên trái từng đoạn có độ dài \(π\) .

Với mỗi \(x_0 \in\) \(\left[ { - {\pi \over 2};{\pi \over 2}} \right]\) thì \(x = 2x_0\in [-π ; π]\), điểm \(M(x ; y = sinx)\) thuộc đoạn đồ thị \((C)\) của hàm số \(y = sinx\), \((x ∈ [-π ; π])\) và điểm \(M’(x_0 ; y_0 = sin2x_0)\) thuộc đoạn đồ thị \((C’)\) của hàm số \(y = sin2x\), ( \(x ∈\) \(\left[ { - {\pi \over 2};{\pi \over 2}} \right]\)) (h.5).

Chú ý rằng, \(x = 2x_0 \Rightarrow sinx = sin2x_0\) do đó hai điểm \(M’\) , \(M\) có tung độ bằng nhau nhưng hoành độ của \(M’\) bằng một nửa hoành độ của \(M\). Từ đó ta thấy có thể suy ra \((C’)\) từ \((C)\) bằng cách “co” \((C)\) dọc theo trục hoành như sau :

- Với mỗi \(M(x ; y) ∈ (C)\) , gọi \(H\) là hình chiếu vuông góc của \(M\) xuống trục \(Oy\) và \(M’\) là trung điểm của đoạn \(HM\) thì \(M’\) \(\left( {{x \over 2};y} \right)\) \(∈ (C’)\) (khi \(M\) vạch trên \((C)\) thì \(M’\) vạch trên \((C’))\). Trong thực hành, ta chỉ cần nối các điểm đặc biệt của \((C’)\) (các điểm \(M’\) ứng với các điểm \(M\) của \((C)\) với hoành độ \(\in \left\{ {0;\,\, \pm {\pi \over 6};\,\, \pm {\pi \over 4};\,\, \pm {\pi \over 3};\,\, \pm {\pi \over 2}} \right\}\) ).