Preventing hypostatic pneumonia after abdominal surgery

A. Miskovic,

Search for other works by this author on:

A. B. Lumb

Search for other works by this author on:

Published:

10 February 2017

  • Preventing hypostatic pneumonia after abdominal surgery
    PDF
  • Split View
    • Article contents
    • Figures & tables
    • Video
    • Audio
    • Supplementary Data
    • Email
    • Twitter
    • Facebook
    • More

Close

Navbar Search Filter Microsite Search Term Search

Abstract

Postoperative pulmonary complications (PPCs) are common, costly, and increase patient mortality. Changes to the respiratory system occur immediately on induction of general anaesthesia: respiratory drive and muscle function are altered, lung volumes reduced, and atelectasis develops in > 75% of patients receiving a neuromuscular blocking drug. The respiratory system may take 6 weeks to return to its preoperative state after general anaesthesia for major surgery. Risk factors for PPC development are numerous, and clinicians should be aware of non-modifiable and modifiable factors in order to recognize those at risk and optimize their care. Many validated risk prediction models are described. These have been useful for improving our understanding of PPC development, but there remains inadequate consensus for them to be useful clinically. Preventative measures include preoperative optimization of co-morbidities, smoking cessation, and correction of anaemia, in addition to intraoperative protective ventilation strategies and appropriate management of neuromuscular blocking drugs. Protective ventilation includes low tidal volumes, which must be calculated according to the patient’s ideal body weight. Further evidence for the most beneficial level of PEEP is required, and on-going randomized trials will hopefully provide more information. When PEEP is used, it may be useful to precede this with a recruitment manoeuvre if atelectasis is suspected. For high-risk patients, surgical time should be minimized. After surgery, nasogastric tubes should be avoided and analgesia optimized. A postoperative mobilization, chest physiotherapy, and oral hygiene bundle reduces PPCs.

The term postoperative pulmonary complication (PPC) encompasses almost any complication affecting the respiratory system after anaesthesia and surgery. These complications are defined heterogeneously, occur commonly, have major adverse effects on patients, and are difficult to predict. This paper reviews the current literature regarding PPCs to enable readers to understand better why they occur, identify at-risk patients, and to suggest strategies to reduce their occurrence. This is a narrative rather than systematic review, and because of the amount of literature on the topic of PPCs it has not been possible to include all relevant papers, so we have focused on those which are, in our opinion, most relevant to clinical practice.

Definition and impact of PPCs

Postoperative pulmonary complications can be considered as a composite outcome measure. In 2015, a European joint taskforce published guidelines for perioperative clinical outcome (EPCO) definitions.1 The EPCO-recommended definitions for PPCs are shown in Table 1 alongside other published definitions to demonstrate the variability in the literature. The taskforce considered respiratory infection, respiratory failure, pleural effusion, atelectasis, pneumothorax, bronchospasm, and aspiration pneumonitis to be the composite measures and defined pneumonia, acute respiratory distress syndrome (ARDS), and pulmonary embolus as individual adverse outcomes. Studies evaluating PPCs also use different combinations of these individual outcomes. A systematic review for the American College of Physicians showed almost 60% of 16 studies used a combination of pneumonia and respiratory failure to define PPCs.27

Table 1

European Perioperative Clinical Outcome definitions1 for postoperative pulmonary complications and other defined outcome measures, shown to highlight the variation of definitions in the literature; in particular, respiratory failure and pneumonia. International statistical classification of diseases and related health problems, ninth revision (ICD-9) codes have also been used to define PPCs.2,3 ARDS, acute respiratory distress syndrome; CXR, chest radiograph; EPCO, European Perioperative Clinical Outcome; FIO 2⁠, fraction of inspired oxygen; NIV, non-invasive ventilation; PaO2⁠, partial pressure of oxygen in arterial blood; PPC, postoperative pulmonary complication

Outcome measureEPCO definitions (identical set used by Canet and colleagues4,and subsequent studies)5,6Other published definitions
Respiratory infection  Antibiotics for suspected infection with one or more of the following: new or changed sputum, new or changed lung opacities, fever, white blood cell count >12 × 109 litre−1  Two or more of the following for >48 h: new cough/sputum production, physical findings compatible with pneumonia, fever >38 °C, and new infiltrate on CXR
Respiratory failure  Postoperative PaO2 <8 kPa (60 mm Hg) on room air, a PaO2 ⁠:FIO2 ratio <40 kPa (300 mm Hg), or arterial oxyhaemoglobin saturation measured with pulse oximetry <90% and requiring oxygen therapy  Ventilator dependence for >1 postoperative day or re-intubation8,
Need for postoperative mechanical ventilation >48 h10–13 
Unplanned re-intubation because of respiratory distress, hypoxia, hypercarbia, or respiratory acidosis within 30 days of surgery10,11,13–15 
Re-intubation within 3 days requiring mechanical ventilation16 
Postoperative acute lung injury17 
ARDS17–19 
Requiring mechanical ventilation within 7 days of surgery20,21 
Requiring NIV22 
Pleural effusion  CXR with blunting of costophrenic angle, loss of sharp silhouette of the ipsilateral hemidiaphragm in upright position, displacement of adjacent anatomical structures, or (in supine position) hazy opacity in one hemithorax with preserved vascular shadows  Pleural effusion requiring thoracocentesis8,9,20 
Atelectasis  Lung opacification with mediastinal shift, hilum or hemidiaphragm shift towards the affected area, with compensatory hyperinflation in adjacent non-atelectatic lung  Requiring bronchoscopic intervention20 
Major atelectasis (one or more pulmonary segments)23 
Pneumothorax  Air in the pleural space with no vascular bed surrounding the visceral pleura  Pneumothorax requiring thoracocentesis20,22 
Bronchospasm  Newly detected expiratory wheeze treated with bronchodilators  Clinical diagnosis resulting in change in therapy89 
Refractory wheeze requiring parenteral drugs in addition to preoperative regimen24 
Aspiration pneumonitis  Acute lung injury after inhalation of regurgitated gastric contents   
Pneumonia  CXR with at least one of the following: infiltrate, consolidation, cavitation;plus at least one of the following: fever >38 °C with no other cause, white cell count <4 or > 12 × 109 litre−1, >70 yr of age with altered mental status with no other cause;plus at least two of the following: new purulent/changed sputum, increased secretions/suctioning, new/worse cough/dyspnoea/tachypnoea, rales/bronchial breath sounds, worsening gas exchange  Radiographic change and antibiotics89 
Antibiotics with new/changed sputum or radiographic change or fever or increased white cell count >12 000 μl−1 4 
Two or more of the following for ≥2 consecutive days: new cough/sputum production, examination compatible with pneumonia, temperature >38 °C, and radiographic change7,23 
New or progressive infiltrate on CXR or crackles or dullness on percussion and any of the following: new purulent/changed sputum, positive blood cultures, isolation of pathogen from sputum20,25 
Positive sputum culture or infiltrate on CXR, and diagnosis of pneumonia or pneumonitis18 
New infiltrate on CXR plus fever, leucocytosis, and positive sputum Gram stain/culture24 
ARDS    Ventilated, bilateral infiltrates on CXR, PaO2⁠:FIO2≤300, minimal evidence of left atrial fluid overload within 7 days of surgery19 
Tracheobronchitis    Purulent sputum with normal chest radiograph, no i.v. antibiotics8,
Pulmonary oedema    Pulmonary congestion/hypostasis, acute oedema of lung, congestive heart failure, fluid overload2,
Exacerbation of pre-existing lung disease23    Not further defined 
Pulmonary embolism23    Not further defined 
Death24,26     

Outcome measureEPCO definitions (identical set used by Canet and colleagues4,and subsequent studies)5,6Other published definitions
Respiratory infection  Antibiotics for suspected infection with one or more of the following: new or changed sputum, new or changed lung opacities, fever, white blood cell count >12 × 109 litre−1  Two or more of the following for >48 h: new cough/sputum production, physical findings compatible with pneumonia, fever >38 °C, and new infiltrate on CXR
Respiratory failure  Postoperative PaO2 <8 kPa (60 mm Hg) on room air, a PaO2 ⁠:FIO2 ratio <40 kPa (300 mm Hg), or arterial oxyhaemoglobin saturation measured with pulse oximetry <90% and requiring oxygen therapy  Ventilator dependence for >1 postoperative day or re-intubation8,
Need for postoperative mechanical ventilation >48 h10–13 
Unplanned re-intubation because of respiratory distress, hypoxia, hypercarbia, or respiratory acidosis within 30 days of surgery10,11,13–15 
Re-intubation within 3 days requiring mechanical ventilation16 
Postoperative acute lung injury17 
ARDS17–19 
Requiring mechanical ventilation within 7 days of surgery20,21 
Requiring NIV22 
Pleural effusion  CXR with blunting of costophrenic angle, loss of sharp silhouette of the ipsilateral hemidiaphragm in upright position, displacement of adjacent anatomical structures, or (in supine position) hazy opacity in one hemithorax with preserved vascular shadows  Pleural effusion requiring thoracocentesis8,9,20 
Atelectasis  Lung opacification with mediastinal shift, hilum or hemidiaphragm shift towards the affected area, with compensatory hyperinflation in adjacent non-atelectatic lung  Requiring bronchoscopic intervention20 
Major atelectasis (one or more pulmonary segments)23 
Pneumothorax  Air in the pleural space with no vascular bed surrounding the visceral pleura  Pneumothorax requiring thoracocentesis20,22 
Bronchospasm  Newly detected expiratory wheeze treated with bronchodilators  Clinical diagnosis resulting in change in therapy89 
Refractory wheeze requiring parenteral drugs in addition to preoperative regimen24 
Aspiration pneumonitis  Acute lung injury after inhalation of regurgitated gastric contents   
Pneumonia  CXR with at least one of the following: infiltrate, consolidation, cavitation;plus at least one of the following: fever >38 °C with no other cause, white cell count <4 or > 12 × 109 litre−1, >70 yr of age with altered mental status with no other cause;plus at least two of the following: new purulent/changed sputum, increased secretions/suctioning, new/worse cough/dyspnoea/tachypnoea, rales/bronchial breath sounds, worsening gas exchange  Radiographic change and antibiotics89 
Antibiotics with new/changed sputum or radiographic change or fever or increased white cell count >12 000 μl−1 4 
Two or more of the following for ≥2 consecutive days: new cough/sputum production, examination compatible with pneumonia, temperature >38 °C, and radiographic change7,23 
New or progressive infiltrate on CXR or crackles or dullness on percussion and any of the following: new purulent/changed sputum, positive blood cultures, isolation of pathogen from sputum20,25 
Positive sputum culture or infiltrate on CXR, and diagnosis of pneumonia or pneumonitis18 
New infiltrate on CXR plus fever, leucocytosis, and positive sputum Gram stain/culture24 
ARDS    Ventilated, bilateral infiltrates on CXR, PaO2⁠:FIO2≤300, minimal evidence of left atrial fluid overload within 7 days of surgery19 
Tracheobronchitis    Purulent sputum with normal chest radiograph, no i.v. antibiotics8,
Pulmonary oedema    Pulmonary congestion/hypostasis, acute oedema of lung, congestive heart failure, fluid overload2,
Exacerbation of pre-existing lung disease23    Not further defined 
Pulmonary embolism23    Not further defined 
Death24,26     

Table 1

European Perioperative Clinical Outcome definitions1 for postoperative pulmonary complications and other defined outcome measures, shown to highlight the variation of definitions in the literature; in particular, respiratory failure and pneumonia. International statistical classification of diseases and related health problems, ninth revision (ICD-9) codes have also been used to define PPCs.2,3 ARDS, acute respiratory distress syndrome; CXR, chest radiograph; EPCO, European Perioperative Clinical Outcome; FIO2⁠, fraction of inspired oxygen; NIV, non-invasive ventilation; PaO2⁠, partial pressure of oxygen in arterial blood; PPC, postoperative pulmonary complication

Outcome measureEPCO definitions (identical set used by Canet and colleagues4,and subsequent studies)5,6Other published definitions
Respiratory infection  Antibiotics for suspected infection with one or more of the following: new or changed sputum, new or changed lung opacities, fever, white blood cell count >12 × 109 litre−1  Two or more of the following for >48 h: new cough/sputum production, physical findings compatible with pneumonia, fever >38 °C, and new infiltrate on CXR
Respiratory failure  Postoperative PaO2 <8 kPa (60 mm Hg) on room air, a PaO2 ⁠:FIO2 ratio <40 kPa (300 mm Hg), or arterial oxyhaemoglobin saturation measured with pulse oximetry <90% and requiring oxygen therapy  Ventilator dependence for >1 postoperative day or re-intubation8,
Need for postoperative mechanical ventilation >48 h10–13 
Unplanned re-intubation because of respiratory distress, hypoxia, hypercarbia, or respiratory acidosis within 30 days of surgery10,11,13–15 
Re-intubation within 3 days requiring mechanical ventilation16 
Postoperative acute lung injury17 
ARDS17–19 
Requiring mechanical ventilation within 7 days of surgery20,21 
Requiring NIV22 
Pleural effusion  CXR with blunting of costophrenic angle, loss of sharp silhouette of the ipsilateral hemidiaphragm in upright position, displacement of adjacent anatomical structures, or (in supine position) hazy opacity in one hemithorax with preserved vascular shadows  Pleural effusion requiring thoracocentesis8,9,20 
Atelectasis  Lung opacification with mediastinal shift, hilum or hemidiaphragm shift towards the affected area, with compensatory hyperinflation in adjacent non-atelectatic lung  Requiring bronchoscopic intervention20 
Major atelectasis (one or more pulmonary segments)23 
Pneumothorax  Air in the pleural space with no vascular bed surrounding the visceral pleura  Pneumothorax requiring thoracocentesis20,22 
Bronchospasm  Newly detected expiratory wheeze treated with bronchodilators  Clinical diagnosis resulting in change in therapy89 
Refractory wheeze requiring parenteral drugs in addition to preoperative regimen24 
Aspiration pneumonitis  Acute lung injury after inhalation of regurgitated gastric contents   
Pneumonia  CXR with at least one of the following: infiltrate, consolidation, cavitation;plus at least one of the following: fever >38 °C with no other cause, white cell count <4 or > 12 × 109 litre−1, >70 yr of age with altered mental status with no other cause;plus at least two of the following: new purulent/changed sputum, increased secretions/suctioning, new/worse cough/dyspnoea/tachypnoea, rales/bronchial breath sounds, worsening gas exchange  Radiographic change and antibiotics89 
Antibiotics with new/changed sputum or radiographic change or fever or increased white cell count >12 000 μl−1 4 
Two or more of the following for ≥2 consecutive days: new cough/sputum production, examination compatible with pneumonia, temperature >38 °C, and radiographic change7,23 
New or progressive infiltrate on CXR or crackles or dullness on percussion and any of the following: new purulent/changed sputum, positive blood cultures, isolation of pathogen from sputum20,25 
Positive sputum culture or infiltrate on CXR, and diagnosis of pneumonia or pneumonitis18 
New infiltrate on CXR plus fever, leucocytosis, and positive sputum Gram stain/culture24 
ARDS    Ventilated, bilateral infiltrates on CXR, PaO2⁠:FIO2≤300, minimal evidence of left atrial fluid overload within 7 days of surgery19 
Tracheobronchitis    Purulent sputum with normal chest radiograph, no i.v. antibiotics8,
Pulmonary oedema    Pulmonary congestion/hypostasis, acute oedema of lung, congestive heart failure, fluid overload2,
Exacerbation of pre-existing lung disease23    Not further defined 
Pulmonary embolism23    Not further defined 
Death24,26     

Outcome measureEPCO definitions (identical set used by Canet and colleagues4,and subsequent studies)5,6Other published definitions
Respiratory infection  Antibiotics for suspected infection with one or more of the following: new or changed sputum, new or changed lung opacities, fever, white blood cell count >12 × 109 litre−1  Two or more of the following for >48 h: new cough/sputum production, physical findings compatible with pneumonia, fever >38 °C, and new infiltrate on CXR
Respiratory failure  Postoperative PaO2 <8 kPa (60 mm Hg) on room air, a PaO2 ⁠:FIO2 ratio <40 kPa (300 mm Hg), or arterial oxyhaemoglobin saturation measured with pulse oximetry <90% and requiring oxygen therapy  Ventilator dependence for >1 postoperative day or re-intubation8,
Need for postoperative mechanical ventilation >48 h10–13 
Unplanned re-intubation because of respiratory distress, hypoxia, hypercarbia, or respiratory acidosis within 30 days of surgery10,11,13–15 
Re-intubation within 3 days requiring mechanical ventilation16 
Postoperative acute lung injury17 
ARDS17–19 
Requiring mechanical ventilation within 7 days of surgery20,21 
Requiring NIV22 
Pleural effusion  CXR with blunting of costophrenic angle, loss of sharp silhouette of the ipsilateral hemidiaphragm in upright position, displacement of adjacent anatomical structures, or (in supine position) hazy opacity in one hemithorax with preserved vascular shadows  Pleural effusion requiring thoracocentesis8,9,20 
Atelectasis  Lung opacification with mediastinal shift, hilum or hemidiaphragm shift towards the affected area, with compensatory hyperinflation in adjacent non-atelectatic lung  Requiring bronchoscopic intervention20 
Major atelectasis (one or more pulmonary segments)23 
Pneumothorax  Air in the pleural space with no vascular bed surrounding the visceral pleura  Pneumothorax requiring thoracocentesis20,22 
Bronchospasm  Newly detected expiratory wheeze treated with bronchodilators  Clinical diagnosis resulting in change in therapy89 
Refractory wheeze requiring parenteral drugs in addition to preoperative regimen24 
Aspiration pneumonitis  Acute lung injury after inhalation of regurgitated gastric contents   
Pneumonia  CXR with at least one of the following: infiltrate, consolidation, cavitation;plus at least one of the following: fever >38 °C with no other cause, white cell count <4 or > 12 × 109 litre−1, >70 yr of age with altered mental status with no other cause;plus at least two of the following: new purulent/changed sputum, increased secretions/suctioning, new/worse cough/dyspnoea/tachypnoea, rales/bronchial breath sounds, worsening gas exchange  Radiographic change and antibiotics89 
Antibiotics with new/changed sputum or radiographic change or fever or increased white cell count >12 000 μl−1 4 
Two or more of the following for ≥2 consecutive days: new cough/sputum production, examination compatible with pneumonia, temperature >38 °C, and radiographic change7,23 
New or progressive infiltrate on CXR or crackles or dullness on percussion and any of the following: new purulent/changed sputum, positive blood cultures, isolation of pathogen from sputum20,25 
Positive sputum culture or infiltrate on CXR, and diagnosis of pneumonia or pneumonitis18 
New infiltrate on CXR plus fever, leucocytosis, and positive sputum Gram stain/culture24 
ARDS    Ventilated, bilateral infiltrates on CXR, PaO2⁠:FIO2≤300, minimal evidence of left atrial fluid overload within 7 days of surgery19 
Tracheobronchitis    Purulent sputum with normal chest radiograph, no i.v. antibiotics8,
Pulmonary oedema    Pulmonary congestion/hypostasis, acute oedema of lung, congestive heart failure, fluid overload2,
Exacerbation of pre-existing lung disease23    Not further defined 
Pulmonary embolism23    Not further defined 
Death24,26     

Incidence

It has been estimated that worldwide >230 million major operations occur annually.28 The incidence of PPCs in major surgery ranges from <1 to 23%.45,78,12,17,20,22,23,29 Several studies have shown pulmonary complications to be more common than cardiac complications,8,30,31 and postoperative respiratory failure is the most common PPC.6,29,Table 2 shows major studies from the last 16 yr, focusing on the varying incidences and mortality, which differ depending on the PPC definitions.47,8,12,20,23,29Table 2 clearly illustrates the wide variation in incidence and mortality rate, mostly caused by a combination of differing definitions (Table 1) and different patient populations, in particular the surgical specialty (see ‘Surgery type’ section below).

Table 2

Incidence and mortality rates of major studies evaluating postoperative pulmonary complications since the year 2000. Prospective studies are followed by retrospective studies in reverse chronological order. Where more than three surgical specialties are included, the term ‘multi-specialty’ is used. Where risk prediction model papers include a training set and a validation set, data from the validation set have been used. AAA, open abdominal aortic aneurysm; ALI, acute lung injury; ARDS, acute respiratory distress syndrome; ARISCAT, Assess Respiratory Risk in Surgical Patients in Catalonia; CXR, chest radiograph; EPCO, European Perioperative Clinical Outcome definition (Table 1); EVAR, endovascular aneurysm repair; PE, pulmonary embolus; PERISCOPE, Prospective Evaluation of a RIsk Score for postoperative pulmonary COmPlications in Europe; PPC, postoperative pulmonary complication; RF, respiratory failure; SpO 2⁠, peripheral oxygen saturation; UPI, unplanned intubation

StudyYearDesignPPCsSample sizePPC incidence (%)Mortality rate with PPC (%)Operative specialty
Canet and colleagues29  2015  Secondary analysis of ‘PERISCOPE’  RF  5384  4.2  10.3 (in hospital)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Prospective multi-centre cohort; evaluating PPCs 
Mazo and colleagues2014  ‘PERISCOPE’  As per EPCO  5099  7.9  8.3 (in hospital)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Prospective multicentre cohort; external validation of ‘ARISCAT’ 
Canet and colleagues2010  ‘ARISCAT’  As per EPCO  2464  5.0  19.5 (30 day)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Prospective multicentre cohort 
24.4 (90 day) 
Scholes and colleagues32  2009  Prospective multi-centre cohort  More than four of the following:
  • collapse/consolidation on CXR;

  • SpO2 <90%;

  • abnormal sputum production;

  • positive sputum culture;

  • leucocytosis;

  • abnormal auscultation; or

  • physician’s diagnosis

 
268  13.0  Not stated  Upper abdominal 
McAlister and colleagues20  2005  Prospective single-centre cohort  RF, pneumonia, atelectasis, pneumothorax, pleural effusion  1055  2.7  Not stated  Multi-specialty (non-thoracic) elective, including abdominal 
Yang and colleagues12  2015  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  Pneumonia, UPI, or RF  165 196  5.8  Not stated  Elective major abdominal (non-vascular) 
Jeong and colleagues2014  Retrospective single-centre analysis of prospectively collected cohort regarding PPC risk  As per EPCO  2059  6.8  Not stated  Multi-specialty elective and emergency, including abdominal (open and laparoscopic), vascular, cardiac, and thoracic 
Blum and colleagues19  2013  Retrospective single-centre cohort  ARDS  50 367  0.2  27.0 (90 day)  Multi-specialty (non-cardiothoracic) elective and emergency, including abdominal 
Brueckmann and colleagues16  2013  Retrospective single-centre cohort  UPI  33 769  0.43  16.0  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Gupta and colleagues13  2013  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  Pneumonia  211 410  1.8  17.0 (30 day)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Li and colleagues18  2013  Retrospective single-centre cohort  Pneumonia, pulmonary oedema, atelectasis, ARDS, pleural effusion  316  18.9  Not specific to PPC  Elective and emergency infrarenal AAA 
Hua and colleagues14  2012  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  UPI  231 548  1.9  28.0 (30 day)  Multi-specialty elective and emergency, including major abdominal, vascular (open and EVAR) cardiac, and thoracic 
Kor and colleagues17  2011  Retrospective analysis of prospective single-centre cohort evaluating intraoperative ventilator settings and ALI  ALI/ARDS  4366  2.6  14.2  Multi-specialty elective, including abdominal (open and laparoscopic), vascular, cardiac, and thoracic 
Gupta and colleagues11  2011  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  RF, UPI  211 410  2.6  25.6 (30 day)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Ramachandran and colleagues15  2011  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  UPI  222 094  0.9  9.7 (low-risk group),  Elective multi-specialty (non-cardiac) 
30.6 (high-risk group) 
Smith and colleagues23  2010  Retrospective single-centre cohort  Pneumonia, acute bronchitis, atelectasis, exacerbation of pre-existing lung disease, RF, PE  329  7.0  16.0 (30 day)  Elective and emergency laparotomy, including AAA 
Johnson and colleagues33  2007  Retrospective analysis of multi-centre prospective cohort (non-specific to PPCs)  RF, UPI  180 359  3.0  26.5 (30 day)  Elective and emergency major vascular and general 
Arozullah and colleagues25  2001  Retrospective analysis of multi-centre prospective cohort (non-specific to PPCs)  Pneumonia  160 805  1.5  21 (30 day)  Multi-specialty (non-cardiac), including abdominal, vascular, and thoracic 
Arozullah and colleagues34  2000  Retrospective analysis of multi-centre prospective cohort (non-specific to PPCs)  RF  81 719  3.4  27 (30 day)  Multi-specialty (non-cardiac), including abdominal, vascular, and thoracic 

StudyYearDesignPPCsSample sizePPC incidence (%)Mortality rate with PPC (%)Operative specialty
Canet and colleagues29  2015  Secondary analysis of ‘PERISCOPE’  RF  5384  4.2  10.3 (in hospital)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Prospective multi-centre cohort; evaluating PPCs 
Mazo and colleagues2014  ‘PERISCOPE’  As per EPCO  5099  7.9  8.3 (in hospital)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Prospective multicentre cohort; external validation of ‘ARISCAT’ 
Canet and colleagues2010  ‘ARISCAT’  As per EPCO  2464  5.0  19.5 (30 day)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Prospective multicentre cohort 
24.4 (90 day) 
Scholes and colleagues32  2009  Prospective multi-centre cohort  More than four of the following:
  • collapse/consolidation on CXR;

  • SpO2 <90%;

  • abnormal sputum production;

  • positive sputum culture;

  • leucocytosis;

  • abnormal auscultation; or

  • physician’s diagnosis

 
268  13.0  Not stated  Upper abdominal 
McAlister and colleagues20  2005  Prospective single-centre cohort  RF, pneumonia, atelectasis, pneumothorax, pleural effusion  1055  2.7  Not stated  Multi-specialty (non-thoracic) elective, including abdominal 
Yang and colleagues12  2015  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  Pneumonia, UPI, or RF  165 196  5.8  Not stated  Elective major abdominal (non-vascular) 
Jeong and colleagues2014  Retrospective single-centre analysis of prospectively collected cohort regarding PPC risk  As per EPCO  2059  6.8  Not stated  Multi-specialty elective and emergency, including abdominal (open and laparoscopic), vascular, cardiac, and thoracic 
Blum and colleagues19  2013  Retrospective single-centre cohort  ARDS  50 367  0.2  27.0 (90 day)  Multi-specialty (non-cardiothoracic) elective and emergency, including abdominal 
Brueckmann and colleagues16  2013  Retrospective single-centre cohort  UPI  33 769  0.43  16.0  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Gupta and colleagues13  2013  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  Pneumonia  211 410  1.8  17.0 (30 day)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Li and colleagues18  2013  Retrospective single-centre cohort  Pneumonia, pulmonary oedema, atelectasis, ARDS, pleural effusion  316  18.9  Not specific to PPC  Elective and emergency infrarenal AAA 
Hua and colleagues14  2012  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  UPI  231 548  1.9  28.0 (30 day)  Multi-specialty elective and emergency, including major abdominal, vascular (open and EVAR) cardiac, and thoracic 
Kor and colleagues17  2011  Retrospective analysis of prospective single-centre cohort evaluating intraoperative ventilator settings and ALI  ALI/ARDS  4366  2.6  14.2  Multi-specialty elective, including abdominal (open and laparoscopic), vascular, cardiac, and thoracic 
Gupta and colleagues11  2011  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  RF, UPI  211 410  2.6  25.6 (30 day)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Ramachandran and colleagues15  2011  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  UPI  222 094  0.9  9.7 (low-risk group),  Elective multi-specialty (non-cardiac) 
30.6 (high-risk group) 
Smith and colleagues23  2010  Retrospective single-centre cohort  Pneumonia, acute bronchitis, atelectasis, exacerbation of pre-existing lung disease, RF, PE  329  7.0  16.0 (30 day)  Elective and emergency laparotomy, including AAA 
Johnson and colleagues33  2007  Retrospective analysis of multi-centre prospective cohort (non-specific to PPCs)  RF, UPI  180 359  3.0  26.5 (30 day)  Elective and emergency major vascular and general 
Arozullah and colleagues25  2001  Retrospective analysis of multi-centre prospective cohort (non-specific to PPCs)  Pneumonia  160 805  1.5  21 (30 day)  Multi-specialty (non-cardiac), including abdominal, vascular, and thoracic 
Arozullah and colleagues34  2000  Retrospective analysis of multi-centre prospective cohort (non-specific to PPCs)  RF  81 719  3.4  27 (30 day)  Multi-specialty (non-cardiac), including abdominal, vascular, and thoracic 

Table 2

Incidence and mortality rates of major studies evaluating postoperative pulmonary complications since the year 2000. Prospective studies are followed by retrospective studies in reverse chronological order. Where more than three surgical specialties are included, the term ‘multi-specialty’ is used. Where risk prediction model papers include a training set and a validation set, data from the validation set have been used. AAA, open abdominal aortic aneurysm; ALI, acute lung injury; ARDS, acute respiratory distress syndrome; ARISCAT, Assess Respiratory Risk in Surgical Patients in Catalonia; CXR, chest radiograph; EPCO, European Perioperative Clinical Outcome definition (Table 1); EVAR, endovascular aneurysm repair; PE, pulmonary embolus; PERISCOPE, Prospective Evaluation of a RIsk Score for postoperative pulmonary COmPlications in Europe; PPC, postoperative pulmonary complication; RF, respiratory failure; SpO2⁠, peripheral oxygen saturation; UPI, unplanned intubation

StudyYearDesignPPCsSample sizePPC incidence (%)Mortality rate with PPC (%)Operative specialty
Canet and colleagues29  2015  Secondary analysis of ‘PERISCOPE’  RF  5384  4.2  10.3 (in hospital)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Prospective multi-centre cohort; evaluating PPCs 
Mazo and colleagues2014  ‘PERISCOPE’  As per EPCO  5099  7.9  8.3 (in hospital)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Prospective multicentre cohort; external validation of ‘ARISCAT’ 
Canet and colleagues2010  ‘ARISCAT’  As per EPCO  2464  5.0  19.5 (30 day)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Prospective multicentre cohort 
24.4 (90 day) 
Scholes and colleagues32  2009  Prospective multi-centre cohort  More than four of the following:
  • collapse/consolidation on CXR;

  • SpO2 <90%;

  • abnormal sputum production;

  • positive sputum culture;

  • leucocytosis;

  • abnormal auscultation; or

  • physician’s diagnosis

 
268  13.0  Not stated  Upper abdominal 
McAlister and colleagues20  2005  Prospective single-centre cohort  RF, pneumonia, atelectasis, pneumothorax, pleural effusion  1055  2.7  Not stated  Multi-specialty (non-thoracic) elective, including abdominal 
Yang and colleagues12  2015  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  Pneumonia, UPI, or RF  165 196  5.8  Not stated  Elective major abdominal (non-vascular) 
Jeong and colleagues2014  Retrospective single-centre analysis of prospectively collected cohort regarding PPC risk  As per EPCO  2059  6.8  Not stated  Multi-specialty elective and emergency, including abdominal (open and laparoscopic), vascular, cardiac, and thoracic 
Blum and colleagues19  2013  Retrospective single-centre cohort  ARDS  50 367  0.2  27.0 (90 day)  Multi-specialty (non-cardiothoracic) elective and emergency, including abdominal 
Brueckmann and colleagues16  2013  Retrospective single-centre cohort  UPI  33 769  0.43  16.0  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Gupta and colleagues13  2013  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  Pneumonia  211 410  1.8  17.0 (30 day)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Li and colleagues18  2013  Retrospective single-centre cohort  Pneumonia, pulmonary oedema, atelectasis, ARDS, pleural effusion  316  18.9  Not specific to PPC  Elective and emergency infrarenal AAA 
Hua and colleagues14  2012  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  UPI  231 548  1.9  28.0 (30 day)  Multi-specialty elective and emergency, including major abdominal, vascular (open and EVAR) cardiac, and thoracic 
Kor and colleagues17  2011  Retrospective analysis of prospective single-centre cohort evaluating intraoperative ventilator settings and ALI  ALI/ARDS  4366  2.6  14.2  Multi-specialty elective, including abdominal (open and laparoscopic), vascular, cardiac, and thoracic 
Gupta and colleagues11  2011  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  RF, UPI  211 410  2.6  25.6 (30 day)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Ramachandran and colleagues15  2011  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  UPI  222 094  0.9  9.7 (low-risk group),  Elective multi-specialty (non-cardiac) 
30.6 (high-risk group) 
Smith and colleagues23  2010  Retrospective single-centre cohort  Pneumonia, acute bronchitis, atelectasis, exacerbation of pre-existing lung disease, RF, PE  329  7.0  16.0 (30 day)  Elective and emergency laparotomy, including AAA 
Johnson and colleagues33  2007  Retrospective analysis of multi-centre prospective cohort (non-specific to PPCs)  RF, UPI  180 359  3.0  26.5 (30 day)  Elective and emergency major vascular and general 
Arozullah and colleagues25  2001  Retrospective analysis of multi-centre prospective cohort (non-specific to PPCs)  Pneumonia  160 805  1.5  21 (30 day)  Multi-specialty (non-cardiac), including abdominal, vascular, and thoracic 
Arozullah and colleagues34  2000  Retrospective analysis of multi-centre prospective cohort (non-specific to PPCs)  RF  81 719  3.4  27 (30 day)  Multi-specialty (non-cardiac), including abdominal, vascular, and thoracic 

StudyYearDesignPPCsSample sizePPC incidence (%)Mortality rate with PPC (%)Operative specialty
Canet and colleagues29  2015  Secondary analysis of ‘PERISCOPE’  RF  5384  4.2  10.3 (in hospital)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Prospective multi-centre cohort; evaluating PPCs 
Mazo and colleagues2014  ‘PERISCOPE’  As per EPCO  5099  7.9  8.3 (in hospital)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Prospective multicentre cohort; external validation of ‘ARISCAT’ 
Canet and colleagues2010  ‘ARISCAT’  As per EPCO  2464  5.0  19.5 (30 day)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Prospective multicentre cohort 
24.4 (90 day) 
Scholes and colleagues32  2009  Prospective multi-centre cohort  More than four of the following:
  • collapse/consolidation on CXR;

  • SpO2 <90%;

  • abnormal sputum production;

  • positive sputum culture;

  • leucocytosis;

  • abnormal auscultation; or

  • physician’s diagnosis

 
268  13.0  Not stated  Upper abdominal 
McAlister and colleagues20  2005  Prospective single-centre cohort  RF, pneumonia, atelectasis, pneumothorax, pleural effusion  1055  2.7  Not stated  Multi-specialty (non-thoracic) elective, including abdominal 
Yang and colleagues12  2015  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  Pneumonia, UPI, or RF  165 196  5.8  Not stated  Elective major abdominal (non-vascular) 
Jeong and colleagues2014  Retrospective single-centre analysis of prospectively collected cohort regarding PPC risk  As per EPCO  2059  6.8  Not stated  Multi-specialty elective and emergency, including abdominal (open and laparoscopic), vascular, cardiac, and thoracic 
Blum and colleagues19  2013  Retrospective single-centre cohort  ARDS  50 367  0.2  27.0 (90 day)  Multi-specialty (non-cardiothoracic) elective and emergency, including abdominal 
Brueckmann and colleagues16  2013  Retrospective single-centre cohort  UPI  33 769  0.43  16.0  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Gupta and colleagues13  2013  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  Pneumonia  211 410  1.8  17.0 (30 day)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Li and colleagues18  2013  Retrospective single-centre cohort  Pneumonia, pulmonary oedema, atelectasis, ARDS, pleural effusion  316  18.9  Not specific to PPC  Elective and emergency infrarenal AAA 
Hua and colleagues14  2012  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  UPI  231 548  1.9  28.0 (30 day)  Multi-specialty elective and emergency, including major abdominal, vascular (open and EVAR) cardiac, and thoracic 
Kor and colleagues17  2011  Retrospective analysis of prospective single-centre cohort evaluating intraoperative ventilator settings and ALI  ALI/ARDS  4366  2.6  14.2  Multi-specialty elective, including abdominal (open and laparoscopic), vascular, cardiac, and thoracic 
Gupta and colleagues11  2011  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  RF, UPI  211 410  2.6  25.6 (30 day)  Multi-specialty elective and emergency, including abdominal, vascular, cardiac, and thoracic 
Ramachandran and colleagues15  2011  Retrospective analysis of multi-centre prospective cohort (not specific to PPCs)  UPI  222 094  0.9  9.7 (low-risk group),  Elective multi-specialty (non-cardiac) 
30.6 (high-risk group) 
Smith and colleagues23  2010  Retrospective single-centre cohort  Pneumonia, acute bronchitis, atelectasis, exacerbation of pre-existing lung disease, RF, PE  329  7.0  16.0 (30 day)  Elective and emergency laparotomy, including AAA 
Johnson and colleagues33  2007  Retrospective analysis of multi-centre prospective cohort (non-specific to PPCs)  RF, UPI  180 359  3.0  26.5 (30 day)  Elective and emergency major vascular and general 
Arozullah and colleagues25  2001  Retrospective analysis of multi-centre prospective cohort (non-specific to PPCs)  Pneumonia  160 805  1.5  21 (30 day)  Multi-specialty (non-cardiac), including abdominal, vascular, and thoracic 
Arozullah and colleagues34  2000  Retrospective analysis of multi-centre prospective cohort (non-specific to PPCs)  RF  81 719  3.4  27 (30 day)  Multi-specialty (non-cardiac), including abdominal, vascular, and thoracic 

Impact

Mortality is increased in both the short and long term in patients who develop a PPC. One in five patients (14–30%) who have a PPC will die within 30 days of major surgery compared with 0.2–3% without a PPC.46,15,17,23,20,35 The 90 day mortality has been shown to be significantly increased in those with a PPC: 24.4 vs 1.2%.4 An observational study of two large databases shows long-term significant differences in mortality rates with and without PPCs: 45.9 vs 8.7% at 1 yr or 71.4 vs 41.1% at 5 yr.35

Morbidity is also increased by PPCs. Length of hospital stay (LOS) has been shown to be prolonged by 13–17 days.8,23,36 For example, postoperative respiratory failure requiring unplanned re-intubation (mostly occurring within 72 h of surgery)15,21 has been shown to be associated with a considerable increase in morbidity and LOS.15,36

Developing a PPC also increases health-care costs, primarily as a result of increased LOS.22 For example, pneumonia or respiratory failure in a Canadian tertiary hospital resulted in a 41 and 47% increase in cost, respectively.30 The most recent study to evaluate the additional expenditure attributable to PPCs found an incremental cost of $25 498 per admission after gastrointestinal surgery.37 In times of increasing financial restrictions, particularly in the UK, PPCs represent a significant potential source of cost-savings. Anaesthetists and surgeons should therefore be aware of those at risk and adopt preventative measures that may reduce morbidity, mortality, and the cost of a surgical procedure.

Pathophysiology leading to PPCs

Intraoperative changes to the respiratory system

Adverse respiratory effects of general anaesthesia (GA) begin as soon as the patient loses consciousness.38 Central respiratory drive is depressed, causing prolonged apnoea followed by a return of spontaneous ventilation with a dose-dependent reduction in minute ventilation. The ventilatory responses to hypercapnia and hypoxia are significantly impaired even at low doses of anaesthetic drugs.39 As a result, hypercapnia is the norm unless artificial ventilation is used, and severe hypoxaemia occurs if ventilation is challenged by, for example, airway obstruction.

Respiratory muscle function changes immediately after induction. Airway obstruction occurs, there is increased curvature of the spine, cephalad diaphragm displacement in dependent areas, and a reduced cross-sectional area of the chest wall. These changes in end-expiratory muscle tone occur irrespective of whether or not the patient receives a neuromuscular blocking drug (NMBD) and lead to a reduction of functional residual capacity (FRC) of 15–20% compared with the subject’s awake, supine volume.38 The reduced FRC, along with abnormal regional distribution of ventilation during intermittent positive pressure ventilation and reduced cardiac output, leads to altered ventilation perfusion (V̇/Q̇) relationships. Although overall ventilation and perfusion are not particularly abnormal, there are increased areas of both high and low ̇ ratios. The former contribute to alveolar deadspace and a further impairment of carbon dioxide elimination, whereas the latter contribute to impaired oxygenation.

A more significant effect of reduced lung volume with regard to PPCs is the development of atelectasis. This occurs in more than three-quarters of patients receiving GA involving a NMBD,40 and is easily seen on computerized tomography (CT) scans in the dependent areas of the lung irrespective of the patient’s position (Fig. 1). Physiological factors contributing to formation of atelectasis include direct compression of lung tissue, for instance by the displaced diaphragm, airway closure when FRC reduces below closing volume, and rapid absorption of gases from alveoli in lung regions where the airways are narrowed or closed. The last of these factors is exacerbated by the use of high fractional inspired oxygen (FIO2⁠), particularly at values of 1.0. For example, preoxygenation with an FIO2 of 1.0, 0.8, or 0.6 results in 5.6, 1.3, and 0.2% atelectasis, respectively, on cross-sectional area of a CT scan a few minutes after induction.41 Despite these dramatic differences at induction, there is no evidence that use of ‘hyperoxia’ (normally FIO2 of 0.8) throughout a GA with the aim of reducing surgical site infection results in more atelectasis after surgery.42 This suggests that even 20% nitrogen in inspired gas is helpful in preventing alveolar collapse. Strategies that may be used to minimize atelectasis involve avoiding the use of 100% oxygen and maintaining moderate levels of positive airway pressure during expiration to maintain airway patency. Once atelectasis has occurred, recruitment manoeuvres (RMs) are required to re-expand it.43,44

Fig 1

Preventing hypostatic pneumonia after abdominal surgery

Computerised tomography scans of the chest in two patients during general anaesthesia in the supine (A) and prone (B) positions. Both scans are taken just cephalad of the right diaphragm, and show atelectasis in dependent lung regions irrespective of patient position.

These multiple and universal physiological changes to respiratory function are, in most instances, easily managed during routine GA, with the majority of patients having no respiratory problems beyond a few hours after emergence. Although poorly researched in comparison with intraoperative changes, it is, however, likely that the changes developing in the early stages of the anaesthetic form the pathophysiological basis for subsequent PPCs in at-risk patients, such as older patients with cardiorespiratory co-morbidity undergoing prolonged major surgery.

Postoperative respiratory pathophysiology

Postanaesthesia care unit changes

Hypoxia is common in the postanaesthesia care unit (PACU) and classified by some studies as a PPC in its own right.21 Multiple interacting factors contribute to episodes of desaturation.

  • (i) Airway obstruction occurs in many patients, exacerbated by the factors below.

  • (ii) Continued sedation from residual anaesthetic and opioid drugs, or from hypercapnia attributable to continuing central respiratory depression.

  • (iii) Residual effects of NMBDs. Even when conventional clinical and quantitative neuromuscular junction monitoring indicate adequate recovery, NMBDs may still impair respiratory function. There is impairment of the normal phasic activity of genioglossus, making airway obstruction or increased resistance more likely.45 Co-ordination of pharyngeal and upper oesophageal muscles is abnormal, increasing the risk of aspiration. This has been elegantly demonstrated in healthy awake volunteers given small doses of NMBDs to train-of-four (TOF) ratios of 0.6–0.9,46 the last of these being generally regarded as clinically recovered from a NMBD. At all levels of NMBD block there were significant numbers of subjects with pharyngeal dysfunction, and videofluoroscopy of a swallow found a high incidence of misdirected swallowing and penetration of contrast onto the vocal cords, even with a TOF ratio of 0.9. These events are likely to be much worse in a patent in the PACU who is also sedated. These changes do not result from muscle weakness per se, but illustrate how small changes in the speed and fine control of muscle responses cause failure of crucial reflexes.

  • (iv) Impairment of ventilatory responses to hypercapnia and hypoxia. Experimental studies in isocapnic subjects show that the hypoxic response is significantly impaired at low doses of anaesthetic drugs (e.g. 0.2 minimal alveolar concentration), but there is wide variation between different agents and experimental conditions.47 In hypercapnic conditions, which are most likely in the clinical situation, the response may be at least partly preserved, but that is not to say that an obstructed patient in the PACU will generate a normal ventilatory response to hypoxia during an episode of airway obstruction.

The reduced FRC and impaired oxygenation normally seen during anaesthesia usually return to normal within a few hours after minor operations, but this is not the case after major surgery. Atelectasis is still present in patients in the PACU. In a small study of 30 patients having peripheral surgery under GA, CT scans were performed 20 min after extubation and showed significant areas of atelectasis still to be present,48 and this was significantly worse if the patient had received 100% oxygen during emergence. A further small study of patients having either inguinal hernia or open cholecystectomy procedures showed CT evidence of atelectasis in nine of 10 subjects at 1 h and in five of 10 at 24 h after surgery.49 Atelectasis on CT scans 24 h after surgery is also more common in morbidly obese patients.50 Although involving only small numbers owing to the challenges of performing chest CT in patients recovering from a recent GA, these studies still suggest that expansion of atelectasis does not reliably occur after surgery. Further indirect evidence of atelectasis in the PACU can be obtained by measuring oxygenation, most easily done with alveolar-to-arterial oxygen difference, which remains substantially elevated 1 h after extubation in patients having major surgery,51 indicating significant venous admixture.

Residual effects of NMBDs may contribute to the inability to re-expand atelectasis in the first few hours after major surgery. Unsurprisingly, residual NMBD activity after GA, defined as a TOF ratio <0.9, is associated with significantly lower values for forced vital capacity (FVC) and peak expiratory flow rate.52 Of more potential relevance to re-expanding atelectasis is a finding in healthy awake volunteers that inspiratory respiratory manoeuvres are more sensitive to NMBD effects than the more usually measured expiratory ones.53 This means that after a dose of a NMBD it takes longer for a patient to recover inspiratory respiratory strength and coordination than to recover normal expiratory activity as demonstrated with FVC or forced expiratory volume in 1 s (FEV1). A TOF ratio of >0.95 was required for a normal forced inspiratory volume in one second, which is the respiratory muscle activity most useful for lung re-expansion.

Respiratory changes beyond the PACU

After major surgery, the restoration of a normal alveolar-to-arterial oxygen difference may take some days, and episodes of hypoxaemia are common. After upper abdominal surgery, FRC usually reaches its lowest value 1–2 days after surgery, before slowly returning to normal values after 5–7 days.54–56 As described above, atelectasis seen on CT scans during anaesthesia persists for at least 24 h in most patients having major surgery. One review of postoperative atelectasis in a heterogeneous group of non-thoracic patients found radiological evidence of atelectasis in 539 of 944 (57%) patients,57 with this incidence showing little sign of improving on postoperative day 3. The presence of atelectasis was not associated with a fever, indicating the difficulty in diagnosing this particular PPC without radiography.

Effort-dependent lung function tests, such as FVC, FEV1, and peak expiratory flow rate, are all reduced significantly after surgery, particularly if the patient has pain.56 The normal activity of most respiratory muscle groups is impaired after major surgery, including the airway muscles, abdominal muscles, and diaphragm.58 Factors contributing to this dysfunction include anaesthetic agents and NMBDs, postoperative analgesic drugs (particularly opioids), pain, disturbed sleep patterns, and the inflammatory response to surgery. The aetiology is more complex than simple muscle weakness and also involves poor co-ordination between muscle groups along with failure of the normal physiological reflexes and control mechanisms on which their activity depends.58

Respiratory control may be abnormal for some weeks after anaesthesia and surgery,59 with, for example, reduced ventilatory responses to hypercapnia and hypoxia. This has major implications for overcoming airway obstruction when asleep and probably explains the particular challenges faced by patients with obstructive sleep apnoea (OSA) in the postoperative period. In one study, the responses were still slightly impaired 6 weeks after surgery, at a time when inflammation, pain, and analgesic use were absent.59 These results suggest plasticity in the respiratory control mechanisms at the time of surgery that takes some time to return to normal.

Sputum retention is common after surgery. General anaesthesia, particularly with a tracheal tube, causes impairment of mucociliary transport in the airways,60 an effect that may persist into the postoperative period.

This combination of reduced FRC, residual atelectasis, an ineffective cough, and abnormal respiratory control, forms an ideal situation for PPCs to develop.

Preoperative risk stratification

Risk prediction models can be used to identify patients at high risk of complications and so may enable more informed consent and optimal perioperative management. Many prediction models for PPCs have been published in the last 5 yr, most of which have limitations as a result of being developed from retrospective databases,5,10,11,13,14,19,25 focused on a single adverse outcome (e.g. pneumonia,13,25 respiratory failure,11,29 unplanned re-intubation,10,14 or acute lung injury/ARDS),17,19 or from a lack of inclusion of intraoperative risk factors. There is therefore no ‘one size fits all’ model for PPC risk stratification.

Here, we describe three related risk prediction models, which were prospective, multicentre trials, using EPCO definitions for composite outcomes. ARISCAT (assess respiratory risk in surgical patients in Catalonia) developed a seven-variable regression model, stratifying patients into low-, intermediate-, and high-risk groups. Respective incidences of PPC development in their validation group were 1.6, 13.3, and 42.1%. The independent variables are low preoperative peripheral oxygen saturation (SpO2⁠; <96%), respiratory infection in the last month, age, preoperative anaemia (<100 g dl−1), intrathoracic/upper abdominal surgery, duration of procedure (>2 h), and emergency surgery.4 Definition of a PPC was the development of at least one of the outcomes subsequently defined by EPCO (Table 1).

PERISCOPE (prospective evaluation of a risk score for postoperative pulmonary complications in Europe) externally validated ARISCAT with good discrimination; c-statistic 0.80 [confidence interval (CI) 0.78–0.82].6 In 2015, secondary analysis of these data (sample size 5384) was used to develop and validate a score to predict postoperative respiratory failure (PRF). The incidence of PRF was 4.2%, and seven factors were used to stratify patients into low-, intermediate-, and high-risk groups, with incidences of PRF of 1.1, 4.6, and 18.8%, respectively. However, the independent variables differ slightly from those found in ARISCAT: low preoperative Sp O2⁠, at least one preoperative respiratory symptom, chronic liver disease, congestive heart failure, intrathoracic/upper abdominal surgery, procedure >2 h, and emergency surgery.29

One other prospective multicentre cohort study, with a small sample size of 268, focused specifically on risk-stratifying patients with upper abdominal incisions.32 They defined PPCs as shown for Scholes and colleagues32 in Table 2. Five independent risk factors were identified in the regression model, including duration of anaesthesia, surgical category, respiratory co-morbidity, current smoker, and predicted maximal oxygen uptake. A score of 2.02 or less derived from a clinical prediction rule was associated with a high risk of PPCs [odds ratio (OR) (CI) 8.41 (3.33–21.26)]. This model requires external validation before clinical implementation. Further risk prediction models have been summarized in Table 2.

These studies highlight the complexity of choosing an appropriate risk prediction model. Although they have undoubtedly furthered our understanding of which patient groups are susceptible to PPCs, the lack of agreement between studies and the complexity of the scoring systems currently make them impractical for routine clinical use.

Who gets postoperative pulmonary complications?

The numerous published non-modifiable and modifiable risk factors that may predict the development of a PPC are shown in Table 3. They can be considered as patient related, procedure related, or laboratory testing risk factors, as categorized by Smetana and colleagues.27 Only the more clinically significant and independent factors are discussed in more detail in this review. These factors are reproducible in multiple studies, and we believe them to be the most clinically relevant.

Table 3

Published risk factors for developing a postoperative pulmonary complication, categorized into patient factors, procedure factors, and laboratory testing (as defined by Smetana and colleagues),27 further divided into non-modifiable and modifiable. Risk factors with strong evidence in the literature are discussed in more detail in the main text. AAA, abdominal aortic aneurysm; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; CXR, chest X-ray; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; GA, general anaesthesia; GORD, gastro-oesophageal reflux disease; NMBDs, neuromuscular blocking drugs; OSA, obstructive sleep apnoea; PACU, postanaesthesia care unit; ‘Positive cough test’, patient takes a deep breath and coughs once, and a positive test=ongoing coughing after the initial cough; TOF, train of four

Patient factorsProcedure factorsLaboratory testing
Non-modifiable  Non-modifiable  Urea >7.5 mmol litre−1 1025 
Age4–7,10,13,14,18,20,24,25,27,33,36  Type of surgery:4–7,10–13,15–18,23,25,27,29  Increased creatinine33 
Male sex12,19,33 
  • upper abdominal

  • AAA

  • Thoracic

  • Neurosurgery

  • head and neck

  • vascular

 
Abnormal liver function tests15 
ASA ≥II5,11–14,16,19,27,33  Low preoperative oxygen saturation4,6,29 
Functional dependence (frailty)10–13,25,27,34,36  ‘Positive cough test’20 
Acute respiratory infection (within 1 month)4,Abnormal preoperative CXR9,27 
Impaired cognitionPreoperative anaemia (<100 g litre−1)4,
Impaired sensorium25  Low albumin5,10,27 
Cerebrovascular accident25  Emergency (vs elective)4–6,10,11,16,18,19,23,25,29,33,36  Predicted maximal oxygen uptake32 
Malignancy7,15  Duration of procedure6,12,14,20,22,27,29,32  FEV1:FVC <0.7 and FEV1 <80% of predicted
Weight loss >10% (within 6 months)15,25  Re-operation18,23,36   
Long-term steroid use25  Multiple GA during admission19   
Prolonged hospitalization15  Modifiable   
Modifiable  Mechanical ventilation strategy3,19,63–71   
Smoking57,12,13,15,25,32,33,61  GA (vs regional)4,25,27,72   
COPD10,12,13,15–19,24,25,27,32,33,36  Long-acting NMBDs and TOF ratio <0.7 in PACU73   
Asthma20,32  Residual neuromuscular block   
CHF15,16,18,27,29,33  Intermediate-acting NMBDs with surgical time <2 h (not antagonized)21   
OSA62  Neostigmine21,74   
BMI <18.5 or > 40 kg m−2 15  Sugammadex with supraglottic airway75,76   
BMI >27 kg m−2 Failure to use peripheral nerve stimulator21,74   
Hypertension15  Open abdominal surgery (vs laparoscopic)5,26,77–79   
Chronic liver disease29  Perioperative nasogastric tube18,20,22,23,25,80   
Renal failure19  Intraoperative blood transfusion19,25,36   
Ascites12     
Diabetes mellitus15,17     
Alcohol17,25     
GORD17     
Preoperative sepsis13–15,33     
Preoperative shock12     

Patient factorsProcedure factorsLaboratory testing
Non-modifiable  Non-modifiable  Urea >7.5 mmol litre−1 1025 
Age4–7,10,13,14,18,20,24,25,27,33,36  Type of surgery:4–7,10–13,15–18,23,25,27,29  Increased creatinine33 
Male sex12,19,33 
  • upper abdominal

  • AAA

  • Thoracic

  • Neurosurgery

  • head and neck

  • vascular

 
Abnormal liver function tests15 
ASA ≥II5,11–14,16,19,27,33  Low preoperative oxygen saturation4,6,29 
Functional dependence (frailty)10–13,25,27,34,36  ‘Positive cough test’20 
Acute respiratory infection (within 1 month)4,Abnormal preoperative CXR9,27 
Impaired cognitionPreoperative anaemia (<100 g litre−1)4,
Impaired sensorium25  Low albumin5,10,27 
Cerebrovascular accident25  Emergency (vs elective)4–6,10,11,16,18,19,23,25,29,33,36  Predicted maximal oxygen uptake32 
Malignancy7,15  Duration of procedure6,12,14,20,22,27,29,32  FEV1:FVC <0.7 and FEV1 <80% of predicted
Weight loss >10% (within 6 months)15,25  Re-operation18,23,36   
Long-term steroid use25  Multiple GA during admission19   
Prolonged hospitalization15  Modifiable   
Modifiable  Mechanical ventilation strategy3,19,63–71   
Smoking57,12,13,15,25,32,33,61  GA (vs regional)4,25,27,72   
COPD10,12,13,15–19,24,25,27,32,33,36  Long-acting NMBDs and TOF ratio <0.7 in PACU73   
Asthma20,32  Residual neuromuscular block   
CHF15,16,18,27,29,33  Intermediate-acting NMBDs with surgical time <2 h (not antagonized)21   
OSA62  Neostigmine21,74   
BMI <18.5 or > 40 kg m−2 15  Sugammadex with supraglottic airway75,76   
BMI >27 kg m−2 Failure to use peripheral nerve stimulator21,74   
Hypertension15  Open abdominal surgery (vs laparoscopic)5,26,77–79   
Chronic liver disease29  Perioperative nasogastric tube18,20,22,23,25,80   
Renal failure19  Intraoperative blood transfusion19,25,36   
Ascites12     
Diabetes mellitus15,17     
Alcohol17,25     
GORD17     
Preoperative sepsis13–15,33     
Preoperative shock12     

Table 3

Published risk factors for developing a postoperative pulmonary complication, categorized into patient factors, procedure factors, and laboratory testing (as defined by Smetana and colleagues),27 further divided into non-modifiable and modifiable. Risk factors with strong evidence in the literature are discussed in more detail in the main text. AAA, abdominal aortic aneurysm; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; CXR, chest X-ray; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; GA, general anaesthesia; GORD, gastro-oesophageal reflux disease; NMBDs, neuromuscular blocking drugs; OSA, obstructive sleep apnoea; PACU, postanaesthesia care unit; ‘Positive cough test’, patient takes a deep breath and coughs once, and a positive test=ongoing coughing after the initial cough; TOF, train of four

Patient factorsProcedure factorsLaboratory testing
Non-modifiable  Non-modifiable  Urea >7.5 mmol litre−1 1025 
Age4–7,10,13,14,18,20,24,25,27,33,36  Type of surgery:4–7,10–13,15–18,23,25,27,29  Increased creatinine33 
Male sex12,19,33 
  • upper abdominal

  • AAA

  • Thoracic

  • Neurosurgery

  • head and neck

  • vascular

 
Abnormal liver function tests15 
ASA ≥II5,11–14,16,19,27,33  Low preoperative oxygen saturation4,6,29 
Functional dependence (frailty)10–13,25,27,34,36  ‘Positive cough test’20 
Acute respiratory infection (within 1 month)4,Abnormal preoperative CXR9,27 
Impaired cognitionPreoperative anaemia (<100 g litre−1)4,
Impaired sensorium25  Low albumin5,10,27 
Cerebrovascular accident25  Emergency (vs elective)4–6,10,11,16,18,19,23,25,29,33,36  Predicted maximal oxygen uptake32 
Malignancy7,15  Duration of procedure6,12,14,20,22,27,29,32  FEV1:FVC <0.7 and FEV1 <80% of predicted
Weight loss >10% (within 6 months)15,25  Re-operation18,23,36   
Long-term steroid use25  Multiple GA during admission19   
Prolonged hospitalization15  Modifiable   
Modifiable  Mechanical ventilation strategy3,19,63–71   
Smoking57,12,13,15,25,32,33,61  GA (vs regional)4,25,27,72   
COPD10,12,13,15–19,24,25,27,32,33,36  Long-acting NMBDs and TOF ratio <0.7 in PACU73   
Asthma20,32  Residual neuromuscular block   
CHF15,16,18,27,29,33  Intermediate-acting NMBDs with surgical time <2 h (not antagonized)21   
OSA62  Neostigmine21,74   
BMI <18.5 or > 40 kg m−2 15  Sugammadex with supraglottic airway75,76   
BMI >27 kg m−2 Failure to use peripheral nerve stimulator21,74   
Hypertension15  Open abdominal surgery (vs laparoscopic)5,26,77–79   
Chronic liver disease29  Perioperative nasogastric tube18,20,22,23,25,80   
Renal failure19  Intraoperative blood transfusion19,25,36   
Ascites12     
Diabetes mellitus15,17     
Alcohol17,25     
GORD17     
Preoperative sepsis13–15,33     
Preoperative shock12     

Patient factorsProcedure factorsLaboratory testing
Non-modifiable  Non-modifiable  Urea >7.5 mmol litre−1 1025 
Age4–7,10,13,14,18,20,24,25,27,33,36  Type of surgery:4–7,10–13,15–18,23,25,27,29  Increased creatinine33 
Male sex12,19,33 
  • upper abdominal

  • AAA

  • Thoracic

  • Neurosurgery

  • head and neck

  • vascular

 
Abnormal liver function tests15 
ASA ≥II5,11–14,16,19,27,33  Low preoperative oxygen saturation4,6,29 
Functional dependence (frailty)10–13,25,27,34,36  ‘Positive cough test’20 
Acute respiratory infection (within 1 month)4,Abnormal preoperative CXR9,27 
Impaired cognitionPreoperative anaemia (<100 g litre−1)4,
Impaired sensorium25  Low albumin5,10,27 
Cerebrovascular accident25  Emergency (vs elective)4–6,10,11,16,18,19,23,25,29,33,36  Predicted maximal oxygen uptake32 
Malignancy7,15  Duration of procedure6,12,14,20,22,27,29,32  FEV1:FVC <0.7 and FEV1 <80% of predicted
Weight loss >10% (within 6 months)15,25  Re-operation18,23,36   
Long-term steroid use25  Multiple GA during admission19   
Prolonged hospitalization15  Modifiable   
Modifiable  Mechanical ventilation strategy3,19,63–71   
Smoking57,12,13,15,25,32,33,61  GA (vs regional)4,25,27,72   
COPD10,12,13,15–19,24,25,27,32,33,36  Long-acting NMBDs and TOF ratio <0.7 in PACU73   
Asthma20,32  Residual neuromuscular block   
CHF15,16,18,27,29,33  Intermediate-acting NMBDs with surgical time <2 h (not antagonized)21   
OSA62  Neostigmine21,74   
BMI <18.5 or > 40 kg m−2 15  Sugammadex with supraglottic airway75,76   
BMI >27 kg m−2 Failure to use peripheral nerve stimulator21,74   
Hypertension15  Open abdominal surgery (vs laparoscopic)5,26,77–79   
Chronic liver disease29  Perioperative nasogastric tube18,20,22,23,25,80   
Renal failure19  Intraoperative blood transfusion19,25,36   
Ascites12     
Diabetes mellitus15,17     
Alcohol17,25     
GORD17     
Preoperative sepsis13–15,33     
Preoperative shock12     

Non-modifiable risk factors

Age

Advancing age, even when adjusted for co-morbidity, is predictive of PPCs. Multiple studies have found age >60 or 65 yr to be a risk factor.7,18,20,33 More detailed age stratification shows an increased risk of a PPC as age increases. Compared with patients <60 yr, the OR (95% CI) for a PPC for 60- to 69-yr-olds is 2.1 (1.7–2.6) and for 70- to 79-yr-olds 3.1 (2.1–4.4).27 Above 80 yr of age, the risk increases further to an OR of 5.1 (1.9–13.3) compared with patients <50 yr old.4 These studies have not considered frailty when adjusting for age. Older patients are more likely to be frail, and frailty has also been shown to be associated with PPCs, even when adjusted for age.81 Interest in frailty is increasing, and the results of further studies of PPC occurrence in age-matched frail and non-frail patients will be interesting.

Surgery type

Patients are at high risk of developing PPCs after certain types of surgery.16,25 Compared with ‘other types of surgery’, the incidence of pneumonia is significantly higher after abdominal aortic aneurysm repair [OR (CI) 4.29 (3.34–5.50)], thoracic [3.92 (3.36–4.57)], upper abdominal [2.68 (2.38–3.03)], or neck surgery [2.30 (1.73–3.05)], neurosurgery [2.14 (1.66–2.75)], and major vascular surgery [1.29 (1.10–1.52)].25 ‘Other types of surgery’ included ear, nose, and throat, lower abdominal, urological, peripheral vascular, and spinal surgery as a collective comparator.

Abdominal and vascular procedures have repeatedly been shown to be high risk for development of PPCs.47 Laparotomy with an upper abdominal incision may have up to 15 times the risk of a PPC compared with a lower abdominal incision.7,23 Yang and colleagues12 confirmed this finding, with a higher incidence of PPCs with oesophagectomy and other upper abdominal procedures compared with colectomy, but did not comment on whether procedures were laparoscopic or open. Emergency surgery compared with elective surgery confers a two- to six-fold increased risk for a PPC.4,16,23,33 Several multivariate analyses have identified reoperation to result in a four- to seven-fold increase in PPCs compared with one procedure.23,26 Although the surgery type is non-modifiable itself, laparoscopic surgery for both upper and lower gastrointestinal procedures results in fewer PPCs compared with open procedures.26,77–79

Preoperative investigations

Preoperative spirometry and arterial blood gases (ABGs) have traditionally been cited as useful for PPC prediction. However, a systematic review in 2002 found four out of five studies of spirometry values not to be predictive of PPCs.22 The fifth study, in patients undergoing head and neck surgery, found spirometry to be predictive of PPCs only in a univariate analysis. This did not extrapolate in multivariate analysis, suggesting that overall, spirometry results are not a useful predictor for PPC development.82 Three studies evaluated the predictive value of preoperative ABGs; none found hypercarbia to be independently associated with PPCs.22 A later systematic review concluded that patients deemed high risk from spirometry results could easily be identified by clinical assessment alone, and that the evidence is not robust for risk stratification for PPCs with spirometry or ABG for non-cardiothoracic surgery.27 The usefulness of a preoperative chest X-ray (CXR) has likewise had inconsistent results. McAlister and colleagues20 found that patients having a CXR performed at the discretion of a clinician did not have more frequent PPCs, whereas Lawrence and colleagues9 found that having an abnormal preoperative CXR (compared with normal CXR) resulted in an OR (CI) of 3.2 (1.1–9.4) for a PPC. Again, an abnormal CXR is likely to be predictable by clinical assessment, but once an abnormal CXR has been found it is predictive of a PPC.27 The National Institute for Health and Care Excellence (NICE) advises that spirometry and ABGs should be performed only at the request of a senior anaesthetist for ASA score III or IV patients with confirmed or suspected respiratory disease, and that CXRs should not be offered routinely before elective surgery.83

Most recently, low preoperative SpO2 (assessed when supine, breathing room air) was found to be a significant independent risk factor for PPCs. Compared with SpO2≥ 96%, patients with preoperative SpO2 91–95% were twice as likely to get a PPC and those with SpO2≤ 90% 10 times more likely.4 This simple test comes at minimal cost and has been externally validated as part of two further PPC prediction models.6,29

Modifiable risk factors and their management

Co-morbidity

An ASA score of II or higher or a diagnosis of chronic obstructive pulmonary disease (COPD), congestive heart failure, or chronic liver disease are independent risk factors for PPCs.16,18,24,27,29,33 A recent meta-analysis has shown that patients with OSA are more than twice as likely as those without OSA to develop acute respiratory failure after non-cardiac surgery.62

Co-morbidities are modifiable to a certain extent in that preoperative medical optimization is possible. Chronic obstructive pulmonary disease and asthma should be optimally treated with bronchodilators and inhaled or oral steroids. A respiratory infection in the last month is associated more chance of developing a PPC,6 and so elective surgery should be postponed until symptoms and lung function tests are back to baseline,84 unless the surgery is urgent, in which case an individual patient decision must be made, balancing the risks of developing a PPC vs delaying surgery. Perioperative steroid replacement for those on high-dose oral steroids should be considered according to local guidelines as there is a paucity of research evidence to guide this practice.85 Congestive heart failure can be pharmacologically optimized by a cardiologist with the aim of minimizing symptoms and maximizing functional capacity. European Society of Cardiology guidelines for treatment of congestive heart failure have been updated in 2016.86 Patients with severe OSA undergoing elective surgery should be commenced on continuous positive airway pressure (CPAP) treatment and assessed for compliance before elective surgery.87

Smoking

Smoking is a risk factor for PPCs.7,12,15,25,61 A meta-analysis comparing current and ex-smokers (for >4 weeks) showed a statistically significant decrease in PPCs for ex-smokers [relative risk (RR) 0.81, CI 0.70–0.93].88 Four large retrospective cohort studies have used the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database to collate information on postoperative complications in current, previous (cessation >1 yr), and never smokers undergoing major surgery. Current smokers were more likely to have a PPC compared with ex-smokers, who were in turn more likely than those who had never smoked,88–90 particularly if they had smoked for >10 pack-yr.91 In active smokers, PPC incidence increases incrementally with the number of pack-year smoked,92 significantly so for >20 pack-yr; the adjusted OR (CI) compared with non-smokers was 1.20 (1.05–1.38) for <20 pack-yr, 1.57 (1.45–1.70) for 41–60 pack-yr, and 1.82 (1.70–1.94) for >60 pack-yr.90 Mortality (<30 days after surgery) is increased in current smokers with an OR (CI) of 1.17 (1.10–1.24), but not in non- and ex-smokers, defined as those who have not smoked for 1 yr before surgery.92 In contrast to increased morbidity, ex-smokers do not appear to have increased 30 day mortality, whether there is a 10 or 50 pack-yr history.92

Smoking cessation before major surgery reduces postoperative morbidity.88,89,93 In 2013, NICE published perioperative smoking cessation recommendations, focusing on pharmacological and behavioural support to aid cessation in the preoperative assessment phase.94 Intervention commenced at this stage of the surgical pathway has been shown to be effective in reducing smoking rates on admission and achieving a 30 day postoperative abstinence, especially in a day-surgery setting.95 Patients are almost three times more likely to remain smoke free at 12 months if they have received intensive compared with minimal cessation support.96 Several small studies have looked at the effectiveness of preoperative smoking cessation programmes in terms of reducing postoperative complications, but have not been adequately powered to show reductions in PPCs specifically.97–99 However, once pooled, data show a significant reduction in PPCs [RR (CI) 0.81 (0.70–0.93].88

Timing of smoking cessation is of interest. Cessation for >4 weeks reduces PPCs by 23%, and for >8 weeks by 47%,93 suggesting that maximizing the preoperative smoking cessation period minimizes PPCs.88 Concerns regarding increased sputum production after smoking cessation resulting in increased pulmonary complications have been refuted.100 Further research is required to evaluate any benefit of smoking cessation 1–2 weeks before surgery. Patients undergoing major surgery have been shown to have a spontaneously high rate of permanent smoking cessation, and Shi and Warner101 stated that having surgery should be regarded by all clinicians involved as a ‘teachable moment’ for smokers.

Preoperative anaemia

Approximately one-third of European patients presenting to pre-assessment clinics are anaemic.102 Patients with preoperative anaemia (haemoglobin <100 g litre−1) undergoing any type of surgery have a three-fold increase in the risk of a PPC.4 Autologous blood transfusion itself has also been shown to be independently associated with PPCs,25,36 and therefore alternative means of treating preoperative anaemia should be considered. The cause of anaemia should be established. Treatment options include dietary supplements, such as vitamin B12, folate, and oral or i.v. iron therapy (if oral intolerant or <4 weeks before surgery) for iron-deficiency anaemia.103 Erythropoietin is also an option but is itself associated with perioperative complications.104 Recent UK national guidelines have been published for the management of preoperative anaemia.105 Identification and treatment may diagnose disease, reduce autologous blood transfusion, conserve supplies, reduce PPCs, and avoid other potentially harmful effects of both anaemia and transfusion.

General anaesthesia

General anaesthesia disturbs many aspects of respiratory function, and it may therefore seem obvious that the incidence of PPCs is reduced in patients who have central or peripheral regional anaesthesia (RA) instead. The nature of surgical procedures that necessitate GA is similar to those listed above as being high risk for developing a PPC, which one may think would account for a proportion of the increased risk of GA vs RA. However, studies have shown that even for the same procedure, GA is an independent risk factor for PPCs compared with RA. For example, an overview of Cochrane systematic reviews showed a significant reduction in postoperative pneumonia [RR (CI) 0.45 (0.26–0.79)] although there was no difference in 30 day mortality.72 Likewise, a study including >200 000 veterans undergoing major non-cardiac surgery demonstrated an OR (CI) of 1.56 (1.36–1.80) for GA compared with RA.25 Canet and colleagues4 demonstrated an incidence of 7.5 vs 2.0% of developing at least one PPC with and without GA in their prospective multicentre study of 2464 patients.

A duration of surgery and anaesthesia of >2 h is independently associated with PPC development.4,20 The OR (CI) increased further with increasing operation time, being 4.9 (2.4–10.1) with >2 h and 9.7 (4.7–19.9) when >3 h.4 The authors state that this risk factor could, to some extent, be controlled by the surgeons;4 they do not suggest how, but it seems reasonable that those at high risk of a PPC should have a senior surgeon to minimize operative time.

Intraoperative ventilation strategies

Mechanical ventilation under GA plays a large role in development of PPCs. The benefits of lung-protective artificial ventilation in patients with ARDS are well established.106 Good evidence now exists that the incidence of PPC is significantly reduced when protective ventilation strategies are used in patients with non-injured lungs (i.e. during surgery). Protective ventilation involves consideration of tidal volume (VT), level of PEEP, and use of RMs. There is robust evidence that low VT is protective against PPCs; however, the ideal level of PEEP is more controversial, as many studies do not evaluate PEEP independently from low tidal volumes,65–68 and there are concerns over haemodynamic compromise with high PEEP levels. Also, PEEP is most effective for optimizing lung function when a RM is performed before application of PEEP,107 but RMs have not been evaluated independently of the level of PEEP, and the definition of RM varies between studies (Table 4). In the non-obese patient with healthy lungs, a plateau ‘opening pressure’ of 40 cm H2O for 7–8 s effectively opens all alveoli.44

Table 4

Different recruitment manoeuvres used in individual studies of intraoperative ventilation strategies; described by Güldner and colleagues69 as three different techniques: ‘bag-squeezing’, ‘stepwise increase in tidal volume’, and ‘stepwise increase in PEEP’. CPAP, continuous positive airway pressure; IBW, ideal body weight (see main text for calculation); I:E, inspiratory to expiratory ratio; RM, recruitment manoeuvre; RR, respiratory rate; VT, tidal volume

StudyTechnique
Severgnini and colleagues (2013)65  Initial setting: 7 ml kg−1 IBW, RR 6 min−1, PEEP 10 cm H2O, I:E ratio 3:1 
VT increased in steps of 4 ml kg−1 IBW until plateau pressure 30 cm H2O for three breaths 
Settings returned to original, with PEEP maintained at 10 cm H2O 
Futier and colleagues (2013)66  CPAP 30 cm H2O for 30 s 
Treschan and colleagues (2012)108  Three manual bag ventilations with a maximal pressure of 40 cm H2O before extubation 
Weingarten and colleagues (2010)109  Three-step increase in PEEP: 
4–10 cm H2O for three breaths 
10–15 cm H2O for three breaths 
15–20 cm H2O for 10 breaths 
PEEP reduced and maintained at 12 cm H2O 
Repeated 30 and 60 min after the first RM and hourly thereafter 

StudyTechnique
Severgnini and colleagues (2013)65  Initial setting: 7 ml kg−1 IBW, RR 6 min−1, PEEP 10 cm H2O, I:E ratio 3:1 
VT increased in steps of 4 ml kg−1 IBW until plateau pressure 30 cm H2O for three breaths 
Settings returned to original, with PEEP maintained at 10 cm H2O 
Futier and colleagues (2013)66  CPAP 30 cm H2O for 30 s 
Treschan and colleagues (2012)108  Three manual bag ventilations with a maximal pressure of 40 cm H2O before extubation 
Weingarten and colleagues (2010)109  Three-step increase in PEEP: 
4–10 cm H2O for three breaths 
10–15 cm H2O for three breaths 
15–20 cm H2O for 10 breaths 
PEEP reduced and maintained at 12 cm H2O 
Repeated 30 and 60 min after the first RM and hourly thereafter 

Table 4

Different recruitment manoeuvres used in individual studies of intraoperative ventilation strategies; described by Güldner and colleagues69 as three different techniques: ‘bag-squeezing’, ‘stepwise increase in tidal volume’, and ‘stepwise increase in PEEP’. CPAP, continuous positive airway pressure; IBW, ideal body weight (see main text for calculation); I:E, inspiratory to expiratory ratio; RM, recruitment manoeuvre; RR, respiratory rate; VT, tidal volume

StudyTechnique
Severgnini and colleagues (2013)65  Initial setting: 7 ml kg−1 IBW, RR 6 min−1, PEEP 10 cm H2O, I:E ratio 3:1 
VT increased in steps of 4 ml kg−1 IBW until plateau pressure 30 cm H2O for three breaths 
Settings returned to original, with PEEP maintained at 10 cm H2O 
Futier and colleagues (2013)66  CPAP 30 cm H2O for 30 s 
Treschan and colleagues (2012)108  Three manual bag ventilations with a maximal pressure of 40 cm H2O before extubation 
Weingarten and colleagues (2010)109  Three-step increase in PEEP: 
4–10 cm H2O for three breaths 
10–15 cm H2O for three breaths 
15–20 cm H2O for 10 breaths 
PEEP reduced and maintained at 12 cm H2O 
Repeated 30 and 60 min after the first RM and hourly thereafter 

StudyTechnique
Severgnini and colleagues (2013)65  Initial setting: 7 ml kg−1 IBW, RR 6 min−1, PEEP 10 cm H2O, I:E ratio 3:1 
VT increased in steps of 4 ml kg−1 IBW until plateau pressure 30 cm H2O for three breaths 
Settings returned to original, with PEEP maintained at 10 cm H2O 
Futier and colleagues (2013)66  CPAP 30 cm H2O for 30 s 
Treschan and colleagues (2012)108  Three manual bag ventilations with a maximal pressure of 40 cm H2O before extubation 
Weingarten and colleagues (2010)109  Three-step increase in PEEP: 
4–10 cm H2O for three breaths 
10–15 cm H2O for three breaths 
15–20 cm H2O for 10 breaths 
PEEP reduced and maintained at 12 cm H2O 
Repeated 30 and 60 min after the first RM and hourly thereafter 

Studies with the highest quality evidence focus on open abdominal surgery. The most current expert recommendation (for non-obese patients with normal lungs) is initially to use a low VT (6–8 ml kg−1) with PEEP ≤ 2cm H2O, FIO2 0.4 if oxygen saturations are ≥92%, and respiratory rate titrated to maintain normocarbia.69 In the event of inadequate oxygenation, an algorithm is suggested.69

Evidence continues to be evaluated. A further meta-analysis in 2016 demonstrated reduced lung infection with low VT alone, but when PEEP with RM were performed in combination with low VT, lung infection, atelectasis, and acute lung injury were also reduced.71 PROBESE,110 IPROVE,111 and LAS VEGAS112 are three studies in the recruitment, data collection, and manuscript preparation phases, respectively, which will provide more evidence for protective perioperative ventilation strategies. Additional trials are required to evaluate the role of individualized, higher PEEP levels in the prevention of PPCs in other types of surgery.

Low tidal volume

A recent meta-analysis of 15 randomized controlled trials (RCTs) including 2127 patients undergoing general surgery showed a significant reduction in PPCs between low (< 8 ml kg−1) and high (>8 ml kg−1) VT ventilation, regardless of the PEEP level used.63 A large multicentre observational study from 2006 showed that 18% of patients still received a VT >10 ml kg−1 despite evidence at the time that high VT promoted an inflammatory response and contributed to acute lung injury.113,114 It does, however, appear that there has been a trend for reduced VT over time, probably influenced by evidence from ARDS ventilation strategies. Levin and colleagues64 noted a significant reduction from 9 to 8.3 ml kg−1 (P=0.01) between 2008 and 2011, and a prospective study of 406 patients in the UK in 2016 showed median tidal volumes of 8.4 ml kg−1 predicted body weight.115 Extremes of weight and female sex are risk factors for inadvertent high-volume ventilation.113 116 It must be emphasized that VT in these studies is always set based on predicted or ideal body weight rather than real weight. Previously described calculations for predicted body weight used by the ARDS network are as follows:106

Men: 50+0.91(centimetres of height−152.4)

Women: 45.5+0.91(centimetres of height−152.4)

Evidence for moderate to high PEEP

Several RCTs and a meta-analysis have shown reduced PPCs with low VT and moderate PEEP levels.65–67 Severgnini and colleagues65 compared 9 ml kg−1VT, zero PEEP, and no RMs (standard ventilation) with 7 ml kg−1, 10 cm H2O PEEP, and an RM after induction, disconnection, and before extubation (protective ventilation). This study evaluated 56 patients undergoing open abdominal surgery of >2 h duration. Pulmonary function (FVC and FEV1) and arterial oxygenation in air were improved, atelectasis on CXR reduced, and the ‘Clinical Pulmonary Infection Score’ reduced in the protective ventilation group. No haemodynamic compromise occurred in the protective ventilation group in this small study.65 Futier and colleagues66 compared 10–12 ml kg−1 and zero PEEP (standard) with 6–8 ml kg−1 and 6–8 cm H2O PEEP with a RM every 30 min (protective), in 400 patients undergoing major open or laparoscopic abdominal surgery. The RR (CI) for PPC development in the protective arm was 0.29 (0.14–0.61). Neither study, as mentioned above, differentiates between low VT and higher PEEP as the beneficial component.

An observational study (>29 000 patients) showed an increased 30 day mortality in patients ventilated with low VT (6–8 ml kg−1) and low PEEP [median (range) 4.0 (2.2–5.0) cm H2O], suggesting that low VT may be beneficial only when used with an appropriate level of PEEP.64 Secondary analysis of a recent larger retrospective study of 64 000 ventilated patients undergoing non-cardiac surgery showed zero PEEP to be harmful, and a PEEP of 5 cm H2O with plateau pressures ≤16 cm H2O to be protective against developing PPCs. Interestingly, low VT (<10 ml kg−1) was not protective in this retrospective study.3 Another small observational study of ear, nose, and throat patients showed a PEEP of 5 cm H2O to be insufficient to prevent atelectasis, but PPCs were not evaluated.117 This group suggests that compliance should be monitored during surgery and PEEP set accordingly. Whether this prevents PPCs is questionable.118

Evidence against high PEEP

High PEEP (>10 cm H2O) may not be as important as low VT in protecting against PPCs and may, in fact, be harmful. The above-mentioned low tidal volume meta-analysis63 showed a non-significant risk reduction towards a low PEEP level, a finding that was supported by the PROVHILO study.70 PROVHILO is a large RCT and is the first to compare low VT with high PEEP (12 cm H2O) with RM vs low VT with low PEEP (≤2 cm H2O) without RM. Postoperative pulmonary complications occurred in 40% of the high PEEP group and 39% of the low-PEEP group [RR (CI) 1.01 (0.86–1.20)]. Furthermore, haemodynamic compromise occurred significantly more commonly in the high-PEEP group requiring more fluid and vasopressors. However, fluid loading before RM and high PEEP reduces cardiovascular compromise in obese patients,119 and PROVHILO does not mention the use of fluid loading before RM in the high-PEEP group.70 Hong and colleagues120 demonstrated significantly increased bronchiolar inflammatory markers in pigs exposed to high PEEP levels in comparison to the low-PEEP group, after 8 h of low-volume ventilation without surgery, suggesting that lung injury might result from high PEEP.

Protective ventilation for obese patients

There is mixed evidence as to whether obese patients, as an individual cohort, are at increased risk of PPCs. However, because of altered respiratory physiology in obesity, especially during GA, a specific protective ventilation strategy is recommended, primarily to reduce atelectasis.121 Tidal volume should be 6–8 ml kg−1 based on predicted body weight, along with PEEP ≥5 cm H2O with the use of appropriate RMs. These patients may require a higher opening pressure of up to 55 cm H2O.107 Respiratory rate should be used to control carbon dioxide concentrations and maintain normal pH.121

Inevitably, with such a mass of often conflicting evidence, the ideal ventilator settings during surgery depend on the individual patient. The authors’ opinion is that a small VT of 6–8 ml kg−1, based on ideal body weight, should be used in all patients, and in patients with healthy lungs having open or peripheral surgery, PEEP of >2 cm H2O is unlikely to be required.69 However, many patients have additional respiratory challenges, such as obesity, pneumoperitoneum, or existing lung disease (including current smokers), and more protective ventilation components are then likely to be required.70 Initially, greater levels of PEEP may be used in an attempt to prevent atelectasis and V̇/Q̇ mismatch developing to such an extent that oxygenation becomes impaired even with modestly increased F IO2 (up to 0.6). Finally, when the PEEP level reaches that associated with cardiovascular problems (≥10 cm H2O),70 an RM should be performed before increasing FIO2 or PEEP further.

Postoperative respiratory support with CPAP and nasal high-flow oxygen

A Cochrane review published in 2014 evaluated 10 studies (1981–2007) with 709 patients.122 It concluded that there was insufficient evidence to confirm a benefit of postoperative CPAP after major abdominal surgery, with regard to reducing mortality or major respiratory complications. A meta-analysis, published in 2012, demonstrated non-invasive ventilation to be beneficial in the postoperative period after major surgery (reduced LOS, re-intubation, and pneumonia rates).123 However, the postoperative data from this meta-analysis are heavily weighted by one RCT focusing on cardiac surgery,124 and otherwise evaluate the same studies as the Cochrane review.124 Post-cardiac surgery prophylactic CPAP (10 cm H2O for 6 h) has been shown to reduce PPCs, but did not shorten LOS.124 A recent meta-analysis showed a reduction in respiratory complications [RR (CI) 0.33 (0.16–0.66)] with pre- and postoperative non-invasive ventilation in obese patients, but only a trend towards a reduction in unplanned re-intubation and intensive care admission.125 Further large, high-quality RCTs are required.

Nasal high-flow oxygen is becoming a popular form of well-tolerated non-invasive ventilation for respiratory failure and is being studied for its place in prevention of PPCs. Prophylactic nasal high-flow oxygen may benefit high-risk cardiac patients with respiratory co-morbidity; a trial is in the pre-recruitment phase to determine this.126 However, it does not improve oxygenation or respiratory function or reduce complications after uncomplicated coronary artery bypass graft surgery.127 The results from an RCT comparing nasal high-flow oxygen with standard treatment to prevent hypoxaemia after abdominal surgery are awaited.128

Neuromuscular blocking drugs and their reversal

It is well known that postoperative residual paralysis causes respiratory compromise. The link between NMBDs and PPCs was first described in an audit of 600 000 patients in 1954, showing a mortality rate of 1:370 in patients who received curare vs 1:2100 in those who did not, with 63% of the deaths having a respiratory component.129 More recent studies confirmed this observation. For example, the use of long-duration NMBDs, such as pancuronium, with a TOF ratio <0.7 after extubation is a risk factor for developing a PPC.73 The same study demonstrated that the occurrence of PPCs was not higher with the use of pancuronium when residual block was avoided, or with atracurium and vecuronium, even in the presence of residual block. In contrast, a recent large observational study showed that using intermediate-duration NMBDs is associated with greater likelihood of desaturation in the PACU and unplanned re-intubation, especially if the duration of surgery was <2 h.21 The control cohort in this study underwent similar major surgical procedures, such as cardiac, thoracic, and abdominal surgery, apparently without the use of a NMBD, highlighting the limitation of retrospective analysis of database information. Another group have shown there to be a dose-dependent increase in PPC development with the use of intermediate-duration NMBDs, but the strength of this relationship was lessened by correct management of NMBD reversal.2

Neostigmine, particularly if given to patients whose NMBD activity is low, has respiratory effects of its own, probably resulting from excess acetylcholine causing weakness. When neostigmine is administered without a NMBD, there is impairment of genioglossus function and pharyngeal muscle coordination,130 and decreases in TOF ratio in peripheral muscles.131,132 These changes may translate into clinical problems. Recent evidence suggests that neostigmine is independently associated with PPCs, ascribed by the study authors either to excess acetylcholine or the duration of action of neostigmine being less than the elimination time of the NMBD in certain conditions.21 The odds of developing postoperative pulmonary oedema and re-intubation are increased when neostigmine is used without neuromuscular monitoring.74

Use of peripheral nerve stimulation in conjunction with neostigmine to guide reversal of NMBDs can reduce residual block and therefore PPCs.21,74 There have been recent calls in both the USA and UK to increase the use of mandatory quantitative monitoring of neuromuscular function whenever NMBDs are administered.133,134

Choice of reversal agent is currently limited by cost in the UK; however, the use of sugammadex is becoming increasingly popular for reversal of rocuronium and vecuronium, with the advantage that it can counteract profound neuromuscular block. Sugammadex use has, however, already been linked to adverse outcomes, such as laryngospasm and negative pressure pulmonary oedema with early administration in the presence of a supraglottic airway.75,76 Prospective evidence is conflicting as to whether sugammadex reduces postoperative residual curarization as a direct cause for reducing PPCs.135,136 A small RCT demonstrated reduced PPCs with sugammadex,137 and in a larger retrospective study comparing sugammadex with neostigmine or no reversal, the authors suggest that PPCs may be reduced with the use of sugammadex.138 A trial is currently recruiting to evaluate PPCs after major abdominal surgery, comparing sugammadex and neostigmine.139

These associations between management of NMBDs and PPCs at first seem surprising. The pharmacokinetics of modern NMBDs suggest that they should be having little clinical effect a few hours after emergence, yet PPCs occur more frequently for several days in patients receiving them. In addition to the failure to re-expand intraoperative atelectasis, there are other possible mechanisms by which events early in recovery might influence longer-term respiratory outcomes. These include inadequate clearance of the airway secretions normally associated with manipulation of the airway at emergence, and aspiration of pharyngeal or gastric secretions, the mechanisms of which are described in the above pathophysiology section.

Nasogastric tube

Several of the above-mentioned studies have identified nasogastric tube (NGT) placement as a risk factor for PPCs. Patients undergoing abdominal surgery are five to eight times more likely to have a PPC if an NGT is used in the perioperative period.20,22,23 A meta-analysis showed increased rates of atelectasis and pneumonia with routine use of NGTs.80 They are traditionally left in situ after abdominal surgery to speed return of bowel function, reduce distension, reduce risk of aspiration, and protect anastomoses. Two meta-analyses have shown no benefit in routine NGT placement after elective or emergency open abdominal surgery.80 140 Considering their association with PPCs as described above, their use should therefore be reserved only for symptom relief or specific surgical reasons.

Other preventative measures

Preoperative physiotherapy

A systematic review of 12 controlled trials showed that preoperative aerobic exercise and inspiratory muscle training (IMT) reduced PPCs and LOS in patients undergoing cardiac and abdominal surgery but not joint replacement surgery.141 The RR (CI) for PPCs was 0.4 (0.23–0.72). The authors recommended targeting patients at high risk of developing a PPC in order to instigate preoperative IMT.141 A more recent meta-analysis included additional controlled trials and showed similar outcomes with IMT, with PPCs almost halved [RR (CI) 0.48 (0.26–0.89)] when compared with ‘sham’ or no IMT in patients having cardiac and abdominal surgery.142 A 2015 Cochrane review confirmed a reduction in postoperative atelectasis and pneumonia after cardiac and major abdominal surgery with preoperative IMT compared with none. However, it is emphasized that the quality of evidence is low to moderate because of unavoidable inadequate blinding in the studies.143 These techniques are time consuming and expensive, normally requiring repeated direct supervision of the patient by a physiotherapist, so until the evidence for their use is more robust they should be reserved for only those patients at very high risk of PPCs.

Postoperative physiotherapy and mobilization

I COUGH is a postoperative respiratory care programme that reduces rates of pneumonia and unplanned re-intubation in general and vascular patients.144 The programme starts before surgery, with education in leaflet and video format. Incentive spirometry is prescribed 10 times each hour (three to five efforts each set) during waking hours until discharge, with the device always being in reach and after preoperative technique practice. Four-hourly documentation of incentive spirometry volumes occurs. Patients deep breathe and cough every 2 h. Ideally, patients are sat in a chair, or the head of the bed is elevated >30°, with mobilization three times a day. Oral hygiene is maintained with twice daily teeth brushing and mouthwash. Incentive spirometry alone has not been shown to reduce PPCs after thoracic, cardiac, or abdominal surgery.145,146 A combination of physiotherapy, mobilization, and oral hygiene seems to be more beneficial.

Analgesia

Addition of epidural analgesia to GA significantly reduces the risk of postoperative pneumonia in the general surgical population when compared with systemic opioids alone.72,147 It is especially beneficial for patients with severe COPD having major abdominal surgery, presumably as a result of improved analgesia and reduced opioid consumption. Epidural analgesia improves respiratory function and reduces rates of pneumonia, postoperative ventilation, and unplanned re-intubation.148,149

Obese patients are more likely to have OSA, and those with OSA are at risk of respiratory depression after surgery because of increased sensitivity to opioids and sedatives.121,150 Reduced doses of opioids should therefore be administered to some patients with known or suspected OSA, because opioid dose is correlated with postoperative increases in OSA and therefore the potential for PPCs.150

Conclusion

Postoperative pulmonary complications are common, and although many scoring systems exist to quantify PPC risk, there is no consensus on the best one to use, and they remain too complex to use clinically. Preoperative investigations, with the exception of SpO2 while breathing air, are poor predictors of developing a PPC. Modifiable risk factors include most cardiorespiratory co-morbidities, and these should be optimized before surgery if time allows. Preoperative smoking cessation interventions before surgery reduce PPC incidence, and more intensive cessation support increases their success. Correction of severe preoperative anaemia also improves PPC risk. In the intraoperative period, avoidance of GA in favour of RA will reduce PPC risk. In those receiving a GA, ‘protective ventilation’ should be used, particularly a small VT of 6–8 ml kg−1 of ideal body weight, supplemented with RMs and PEEP if required. The ideal level of PEEP remains controversial, with <5 cm H2O being acceptable in low-risk patients, but higher levels will be required in more challenging patients. The use of NMBDs is associated with PPCs, so these should be avoided if possible, and when used, they should be monitored quantitatively and antagonized with neostigmine only when required. Postoperative non-invasive ventilation may be useful in a small group of high-risk patients, but otherwise avoidance of PPCs after major surgery requires good analgesia and a care bundle of physiotherapy, mobilization, and good oral hygiene. It is our hope that as these strategies become more widely adopted, the incidence of PPCs and their associated morbidity and mortality will reduce.

Authors’ contributions

A.M. and A.L. contributed equally to development, drafting, and final approval of the version to be published, and agree to be accountable for all aspects of the work, ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Declaration of interest

None declared.

References

1

Jammer

I

Wickboldt

N

Sander

M

, et al. .

Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: a statement from the ESA-ESICM joint taskforce on perioperative outcome measures

.

Eur J Anaesthesiol

2015

;

32

:

88

105

2

McLean

DJ

Diaz-Gil

D

Farhan

HN

Ladha

KS

Kurth

T

Eikermann

M.

Dose-dependent association between intermediate-acting neuromuscular-blocking agents and postoperative respiratory complications

.

Anesthesiology

2015

;

122

:

1201

13

3

Ladha

K

Vidal Melo

MF

McLean

DJ

, et al. .

Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study

.

Br Med J

2015

;

351

:

h3646

4

Canet

J

Gallart

L

Gomar

C

, et al. .

Prediction of postoperative pulmonary complications in a population-based surgical cohort

.

Anesthesiology

2010

;

113

:

1338

50

5

Jeong

B-H

Shin

B

Eom

JS

, et al. .

Development of a prediction rule for estimating postoperative pulmonary complications

.

PLoS One

2014

;

9

:

e113656

6

Mazo

V

Sabaté

S

Canet

J

, et al. .

Prospective external validation of a predictive score for postoperative pulmonary complications

.

Anesthesiology

2014

;

121

:

219

31

7

Brooks-Brunn

JA.

Predictors of postoperative pulmonary complications following abdominal surgery

.

Chest

1997

;

111

:

564

71

8

Lawrence

VA

Hilsenbeck

SG

Mulrow

CD

Dhanda

R

Sapp

J

Page

CP.

Incidence and hospital stay for cardiac and pulmonary complications after abdominal surgery

.

J Gen Intern Med

1995

;

10

:

671

8

9

Lawrence

VA

Dhanda

R

Hilsenbeck

SG

Page

CP.

Risk of pulmonary complications after elective abdominal surgery

.

Chest

1996

;

110

:

744

50

10

Arozullah

AM

Daley

J

Henderson

WG

Khuri

SF.

Multifactorial risk index for predicting postoperative respiratory failure in men after major non cardiac surgery. The National Veterans Administration Surgical Quality Improvement Program

.

Ann Surg

2000

;

232

:

242

53

11

Gupta

H

Gupta

P

Fang

X

, et al. .

Development and validation of a risk calculator predicting postoperative respiratory failure

.

Chest

2011

;

140

:

1207

15

12

Yang

CK

Teng

A

Lee

DY

Rose

K.

Pulmonary complications after major abdominal surgery: national surgical quality improvement program analysis

.

J Surg Res

2015

;

198

:

441

9

13

Gupta

H

Gupta

PK

Schuller

D

, et al. .

Development and validation of a risk calculator for predicting postoperative pneumonia

.

Mayo Clin Proc

2013

;

88

:

1241

9

14

Hua

M

Brady

J

Guohua

L.

A scoring system to predict unplanned intubation in patients having undergone major surgical procedures

.

Anesth Analg

2012

;

115

:

88

94

15

Ramachandran

SK

Nafiu

OO

Ghaferi

A

Tremper

KK

Shanks

A

Kheterpal

S.

Independent predictors and outcomes of unanticipated early postoperative tracheal intubation after nonemergent, noncardiac surgery

.

Anesthesiology

2011

;

115

:

44

53

16

Brueckmann

B

Villa-Uribe

JL

Bateman

BT

, et al. .

Development and validation of a score for prediction of postoperative respiratory complications

.

Anesthesiology

2013

;

118

:

1276

85

17

Kor

DJ

Warner

DO

Alsara

A

, et al. .

Derivation and diagnostic accuracy of the surgical lung injury prediction model

.

Anesthesiology

2011

;

115

:

117

28

18

Li

C

Yang

WH

Zhou

J

, et al. .

Risk factors for predicting postoperative complications after open infrarenal abdominal aortic aneurysm repair: results from a single vascular center in China

.

J Clin Anesth

2013

;

25

:

371

8

19

Blum

JM

Stentz

MJ

Dechert

R

, et al. .

Preoperative and intraoperative predictors of postoperative acute respiratory distress syndrome in a general surgical population

.

Anesthesiology

2013

;

118

:

19

29

20

McAlister

FA

Bertsch

K

Man

J

Bradley

J

Jacka

M.

Incidence of and risk factors for pulmonary complications after non-thoracic surgery

.

Am J Respir Crit Care Med

2005

;

171

:

514

7

21

Grosse-Sundrup

M

Henneman

JP

Sandberg

WS

, et al. .

Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study

.

Br Med J

2012

;

345

:

e6329

22

Fisher

BW

Majumdar

SR

McAlister

FA.

Predicting pulmonary complications after nonthoracic surgery: a systematic review of blinded studies

.

Am J Med

2002

;

112

:

219

25

23

Smith

PR

Baig

MA

Brito

V

Bader

F

Bergman

MI

Alfonso

A.

Postoperative pulmonary complications after laparotomy

.

Respiration

2010

;

80

:

269

74

24

Wong

DH

Weber

EC

Schnell

MJ

Wong

AB

Anderson

CT

Barker

SJ.

Factors associated with postoperative pulmonary complications in patients with severe chronic obstructive pulmonary disease

.

Anesth Analg

1995

;

80

:

276

84

25

Arozullah

AM

Khuri

SF

Henderson

WG

Daley

J.

Development and validation of a multifactorial risk index for predicting postoperative pneumonia after major noncardiac surgery

.

Ann Intern Med

2001

;

135

:

847

57

26

Antoniou

SA

Antoniou

GA

Koch

OO

Köhler

G

Pointner

R

Granderath

FA.

Laparoscopic versus open obesity surgery: a meta-analysis of pulmonary complications

.

Dig Surg

2015

;

32

:

98

107

27

Smetana

GW

Lawrence

VA

Cornell

JE.

Preoperative pulmonary risk stratification for non cardiothoracic surgery: systematic review for the American College of Physicians

.

Ann Intern Med

2006

;

144

:

581

95

28

Weiser

TG

Regenbogen

SE

Thompson

KD

, et al. .

An estimation of the global volume of surgery: a modelling strategy based on available data

.

Lancet

2008

;

372

:

139

44

29

Canet

J

Sabaté

S

Mazo

V

, et al. .

Development and validation of a score to predict postoperative respiratory failure in a multicentre European cohort. A prospective, observational study

.

Eur J Anaesthesiol

2015

;

32

:

458

70

30

Khan

NA

Quan

H

Bugar

JM

Lemaire

JB

Brant

R

Ghali

WA.

Association of postoperative complications with hospital costs and length of stay in a tertiary care center

.

J Gen Intern Med

2006

;

21

:

177

80

31

Lawrence

VA

Hilsenbeck

SG

Noveck

H

Poses

RM

Carson

JL.

Medical complications and outcomes after hip fracture repair

.

Arch Intern Med

2002

;

162

:

2053

7

32

Scholes

RL

Browning

L

Sztendur

EM

Denehy

L.

Duration of anaesthesia, type of surgery, respiratory co-morbidity, predicted VO2max and smoking predict postoperative pulmonary complications after upper abdominal surgery: an observational study

.

Aust J Physiother

2009

;

55

:

191

8

33

Johnson

RG

Arozullah

AM

Neumayer

L

Henderson

WG

Hosokawa

P

Khuri

SF.

Multivariable predictors of postoperative respiratory failure after general and vascular surgery: results from the patient safety in surgery study

.

J Am Coll Surg

2007

;

204

:

1188

98

34

Arozullah

AM

Daley

J

Henderson

WG

Khuri

SF.

Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery

.

Ann Surg

2000

;

232

:

242

53

35

Khuri

SF

Henderson

WG

DePalma

RG

Mosca

C

Healey

NA

Kumbhani

DJ.

Determinants of long-term survival after major surgery and the adverse effect of postoperative complications

.

Ann Surg

2005

;

242

:

326

41

36

Nafiu

OO

Ramachandran

SK

Ackwerh

R

Tremper

KK

Campbell

DA

Jr

Stanley

JC.

Factors associated with and consequences of unplanned post-operative intubation in elderly vascular and general surgery patients

.

Eur J Anaesthesiol

2011

;

28

:

220

4

37

Fleisher

LE

Linde-Zwirble

WT.

Incidence, outcome, and attributable resource use associated with pulmonary and cardiac complications after major small and large bowel procedures

.

Perioper Med

2014

;

3

:

7

38

Lumb

AB

, Anaesthesia. In:

Lumb

AB.

Nunn’s Applied Respiratory Physiology

, 8th Edn.

London

:

Elsevier

,

2016

;

291

318

39

Teppema

LJ

Baby

S.

Anesthetics and control of breathing

.

Respir Physiol Neurobiol

2011

;

177

:

80

92

40

Lundquist

H

Hedenstierna

G

Strandberg

A

, et al. .

CT-assessment of dependent lung densities in man during general anaesthesia

.

Acta Radiol

1995

;

36

:

626

32

41

Edmark

L

Kostova-Aherdan

K

Enlund

M

Hedenstierna

G.

Optimal oxygen concentration during induction of general anesthesia

.

Anesthesiology

2003

;

98

:

28

33

42

Hovaguimian

F

Lysakowski

C

Elia

N

Tramèr

MR.

Effect of intraoperative high inspired oxygen fraction on surgical site infection, postoperative nausea and vomiting, and pulmonary function: systematic review and meta-analysis of randomized controlled trials

.

Anesthesiology

2013

;

119

:

303

16

43

Tusman

G

Böhm

SH

Vazquez de Anda

GF

, et al. .

‘Alveolar recruitment strategy’ improves arterial oxygenation during general anaesthesia

.

Br J Anaesth

1999

;

82

:

8

13

44

Rothen

HU

Neumann

P

Berglund

JE

Valtysson

J

Magnusson

A

Hedenstierna

G.

Dynamics of re-expansion of atelectasis during general anaesthesia

.

Br J Anaesth

1999

;

82

:

551

6

45

Herbstreit

F

Peters

J

Eikermann

M.

Impaired upper airway integrity by residual neuromuscular blockade. Increased airway collapsibility and blunted genioglossus muscle activity in response to negative pharyngeal pressure

.

Anesthesiology

2009

;

110

:

1253

60

46

Sundman

E

Witt

H

Olsson

R

Ekberg

O

Kuylenstierna

R

Eriksson

LI.

The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans

.

Anesthesiology

2000

;

92

:

977

84

47

Pandit

JJ.

The variable effect of low-dose volatile anaesthetics on the acute ventilator response to hypoxia in humans: a quantitative review

.

Anaesthesia

2002

;

57

:

632

43

48

Benoit

Z

Wicky

S

Fischer

J-F

, et al. .

The effect of increased Fio2 before tracheal extubation on postoperative atelectasis

.

Anesth Analg

2002

;

95

:

1777

81

49

Strandberg

A

Tokics

L

Brismar

B

Lundquist

H

Hedenstierna

G.

Atelectasis during anaesthesia and in the postoperative period

.

Acta Anaesthesiol Scand

1986

;

30

:

154

8

50

Eichenberger

A-S

Proietti

S

Wicky

S

, et al. .

Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem

.

Anesth Analg

2002

;

95

:

1788

92

51

Lumb

AB

Bradshaw

K

Gamlin

FMC

Heard

J.

The effect of coughing at extubation on oxygenation in the post-anaesthesia care unit

.

Anaesthesia

2015

;

70

:

416

20

52

Kumar

GV

Nair

AM

Murthy

HS

Jalaja

KR

Ramachandra

K

Parameshwara

G.

Residual neuromuscular blockade affects postoperative pulmonary function

.

Anesthesiology

2012

;

117

:

1234

44

53

Eikermann

M

Groeben

H

Hüsing

J

Pet

J.

Accelerometry of adductor pollicis muscle predicts recovery of respiratory function from neuromuscular blockade

.

Anesthesiology

2003

;

98

:

1333

7

54

Meyers

JR

Lembeck

L

O’Kane

H

Baue

AE.

Changes in functional residual capacity of the lung after operation

.

Arch Surg

1975

;

110

:

576

83

55

Craig

DB.

Postoperative recovery of pulmonary function

.

Anesth Analg

1981

;

60

:

46

52

56

Liu

S

Carpenter

RL

Neal

JM.

Epidural anesthesia and analgesia: their role in postoperative outcome

.

Anesthesiology

1995

;

82

:

1474

506

57

Mavros

MN

Velmahos

GC

Falagas

ME.

Atelectasis as a cause of postoperative fever. Where is the clinical evidence?

Chest

2011

;

140

:

418

24

58

Sasaki

N

Meyer

MJ

Eikermann

M.

Postoperative respiratory muscle dysfunction: pathophysiology and preventive strategies

.

Anesthesiology

2013

;

118

:

961

78

59

Nieuwenhuijs

D

Bruce

J

Drummond

GB

Warren

PM

Wraith

PK

Dahan

A.

Ventilatory responses after major surgery and high dependency care

.

Br J Anaesth

2012

;

108

:

864

71

60

Keller

C

Brimacombe

J.

Bronchial mucus transport velocity in paralyzed anesthetized patients: a comparison of the laryngeal mask airway and cuffed tracheal tube

.

Anesth Analg

1998

;

86

:

1280

2

61

Myles

PS

Iacono

GA

Hunt

JO

, et al. .

Risk of respiratory complications and wound infection in patients undergoing ambulatory surgery: smokers versus nonsmokers

.

Anesthesiology

2002

;

97

:

842

7

62

Kaw

R

Chung

F

Pasupuleti

V

Mehta

J

Gay

PC

Hernandez

AV.

Meta-analysis of the association between obstructive sleep apnoea and postoperative outcome

.

Br J Anaesth

2012

;

109

:

897

906

63

Serpa Neto

A

Hemmes

SN

Barbas

CS

, et al. .

Protective versus conventional ventilation for surgery. A systematic review and individual patient data meta-analysis

.

Anesthesiology

2015

;

123

:

66

78

64

Levin

MA

McCormick

PJ

Lin

HM

Hosseinian

L

Fischer

GW.

Low intraoperative tidal volume ventilation with minimal PEEP is associated with increased mortality

.

Br J Anaesth

2014

;

113

:

97

108

65

Severgnini

P

Selmo

G

Lanza

C

, et al. .

Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function

.

Anesthesiology

2013

;

118

:

1307

21

66

Futier

E

Constantin

JM

Paugam-Burtz

C

, et al. .

IMPROVE Study Group: a trial of intra-operative low-tidal-volume ventilation in abdominal surgery

.

N Engl J Med

2013

;

369

:

428

37

67

Hemmes

SN

Serpa Neto

A

Schultz

MJ.

Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis

.

Curr Opin Anesthesiol

2013

;

26

:

126

33

68

Gu

W

Wang

F

Liu

J.

Effect of lung-protective ventilation with lower tidal volumes on clinical outcomes among patients undergoing surgery: a meta-analysis of randomized controlled trials

.

CMAJ

2015

;

187

:

E101

9

69

Güldner

A

Kiss

T

Serpa Neto

A

, et al. .

Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications. A comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers

.

Anesthesiology

2015

;

123

:

692

713

70

PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology

,

Hemmes

SN

Gama de Abreu

M

Pelosi

P

, et al. .

High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial

.

Lancet

2014

;

384

:

495

503

71

Yang

D

Grant

MC

Stone

A

Wu

CL

Wick

ECA.

Meta-analysis of intraoperative ventilation strategies to prevent pulmonary complications: is low tidal volume alone sufficient to protect healthy lungs?

Ann Surg

2016

;

263

:

881

7

72

Guay

J

Choi

P

Suresh

S

Albert

N

Kopp

S

Pace

NL.

Neuraxial blockade for the prevention of postoperative mortality and major morbidity: an overview of Cochrane systematic reviews

.

Cochrane Database Syst Rev

2014

;

1

:

CD010108

73

Berg

H

Roed

J

Viby-Mogensen

J

, et al. .

Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium

.

Acta Anaesthesiol Scand

1997

;

41

:

1095

103

74

Sasaki

M

Meyer

M

Malviya

SA

, et al. .

Effects of neostigmine reversal of nondepolarizing neuromuscular blocking agents on postoperative respiratory outcomes; a prospective study

.

Anesthesiology

2014

;

121

:

959

68

75

Komasawa

N

Nishihara

I

Minami

T.

Relationship between timing of sugammadex administration and development of laryngospasm during recovery from anaesthesia when using supraglottic devices: a randomised clinical study

.

Eur J Anaesthesiol

2016

;

33

:

691

2

76

Ikeda-Miyagawa

Y

Kihara

T

Matsuda

R.

Case of negative pressure pulmonary edema after administration of sugammadex under general anesthesia with laryngeal mask airway

.

Masui

2014

;

63

:

1362

5

77

Lee

CZ

Kao

LT

Lin

HC

Wei

PL.

Comparison of clinical outcome between laparoscopic and open right hemicolectomy: a nationwide study

.

World J Surg Oncol

2015

;

13

:

250

78

Bablekos

GD

Michaelides

SA

Analitis

A

Charalabopoulos

KA.

Effects of laparoscopic cholecystectomy on lung function: a systematic review

.

World J Gastroenterol

2014

;

20

:

17603

17

79

Jiang

L

Yang

KH

Guan

QL

, et al. .

Laparoscopy-assisted gastrectomy versus open gastrectomy for resectable gastric cancer: an update meta-analysis based on randomised controlled trials

.

Surg Endosc

2013

;

27

:

2466

80

80

Cheatham

ML

Chapman

WC

Key

SP

Sawyers

JL.

A meta-analysis of selective versus routine nasogastric decompression after elective laparotomy

.

Ann Surg

1995

;

221

:

469

78

81

Robinson

TN

Wu

DS

Pointer

L

, et al. .

Simple frailty score predicts postoperative complications across surgical specialties

.

Am J Surg

2013

;

206

:

544

50

82

Rao

MK

Reilley

TE

Schuller

DE

Young

DC.

Analysis of risk factors for postoperative pulmonary complications in head and neck surgery

.

Laryngoscope

1992

;

102

:

45

7

84

Lumb

A

Biercamp

C.

Chronic obstructive pulmonary disease and anaesthesia

.

Contin Educ Anaesth Crit Care Pain

2013

;

14

:

1

5

85

Yong

SL

Marik

P

Esposito

M

Coulthard

P.

Supplemental perioperative steroids for surgical patients with adrenal insufficiency

.

Cochrane Database Syst Rev

2009

;

4

:

CD005367

86

Ponikowski

P

Voors

AA

Anker

SD

, et al. .

ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

.

Eur Heart J

2016

;

37

:

2129

200

87

Association of Anaesthetists of Great Britain and Ireland

.

Peri-operative management of the obese surgical patient 2015

.

Anaesthesia

2015

;

70

:

859

76

88

Mills

E

Eyawo

O

Lockhart

I

Kelly

S

Wu

P

Ebbert

JO.

Smoking cessation reduces postoperative complications: a systematic review and meta-analysis

.

Am J Med

2011

;

124

:

144

54

89

Schmid

M

Sood

A

Campbell

L

, et al. .

Impact of smoking on perioperative outcomes after major surgery

.

Am J Surg

2015

;

210

:

221

9

90

Hawn

MT

Houston

TK

Campagna

EJ

, et al. .

The attributable risk of smoking on surgical complications

.

Ann Surg

2011

;

254

:

914

20

91

Turan

A

Mascha

EJ

Roberman

D

, et al. .

Smoking and perioperative outcomes

.

Anesthesiology

2011

;

114

:

837

46

92

Musallam

KM

Rosendaal

FR

Zaatari

G

, et al. .

Smoking and the risk of mortality and vascular and respiratory events in patients undergoing major surgery

.

JAMA Surg

2013

;

148

:

755

62

93

Wong

J

Lam

DP

Abrishami

A

Chan

MTV

Chung

F.

Short-term preoperative smoking cessation and postoperative complications: a systematic review and meta-analysis

.

Can J Anaesth

2012

;

59

:

268

79

94

Smoking cessation in secondary care: acute, maternity and mental health services (NICE public health guidance 48). November

2013

. Available from http://www.nice.org.uk/guidance/ph48 (accessed 27 January 2017)

95

Lee

SM

Landry

J

Jones

PM

Buhrmann

O

Morley-Forster

P.

The effectiveness of a perioperative smoking cessation program: a randomized clinical trial

.

Anesth Analg

2013

;

117

:

605

13

96

Thomsen

T

Villebro

N

Møller

AM.

Interventions for preoperative smoking cessation

.

Cochrane Database Syst Rev

2010

;

7

:

CD002294

97

Lindström

D

Sadr Azodi

O

Wladis

A

, et al. .

Effects of a perioperative smoking cessation intervention on postoperative complications: a randomized trial

.

Ann Surg

2008

;

248

:

739

45

98

Møller

AM

Villebro

N

Pedersen

T

Tønnesen

H.

Effect of preoperative smoking intervention on postoperative complications: a randomised clinical trial

.

Lancet

2002

;

359

:

114

7

99

Sørensen

LT

Jørgensen

T.

Short-term pre-operative smoking cessation intervention does not affect postoperative complications in colorectal surgery: a randomized clinical trial

.

Colorectal Dis

2003

;

5

:

347

52

100

Myers

K

Hajek

P

Hinds

C

McRobbie

H.

Stopping smoking shortly before surgery and postoperative complications: a systematic review and meta-analysis

.

Arch Intern Med

2011

;

171

:

983

9

101

Shi

Y

Warner

DO.

Surgery as a teachable moment for smoking cessation

.

Anesthesiology

2010

;

112

:

102

7

102

Baron

DM

Hochrieser

H

Posch

M

, et al. .

Preoperative anaemia is associated with poor clinical outcome in non-cardiac surgery patients

.

Br J Anaesth

2014

;

113

:

416

23

103

Clevenger

B

Richards

T.

Pre-operative anaemia

.

Anaesthesia

2015

;

70

:

20

8

104

Unger

EF

Thompson

AM

Blank

MJ

Temple

R.

Erythropoiesis-stimulating agents — time for a reevaluation

.

N Engl J Med

2010

;

362

:

189

92

105

Kotzé

A

Harris

A

Baker

C

, et al. .

British committee for standards in haematology guidelines on the identification and management of pre-operative anaemia

.

Br J Haematol

2015

;

171

:

322

31

106

Acute Respiratory Distress Syndrome Network

.

Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome

.

N Engl J Med

2000

;

342

:

1301

8

107

Reinius

H

Jonsson

L

Gustafsson

S

, et al. .

Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis. A computerized tomography study

.

Anesthesiology

2009

;

111

:

979

87

108

Treschan

TA

Kaisers

W

Schaefer

MS

, et al. .

Ventilation with low tidal volumes during upper abdominal surgery does not improve postoperative lung function

.

Br J Anaesth

2012

;

109

:

263

71

109

Weingarten

TN

Whalen

FX

Warner

DO

, et al. .

Comparison of two ventilator strategies in elderly patients undergoing major abdominal surgery

.

Br J Anaesth

2010

;

104

:

16

22

110

Protective Ventilation With Higher Versus Lower PEEP During General Anesthesia for Surgery in Obese Patients (PROBESE). ClinicalTrials.gov Identifier: NCT02148692

111

Individualized Perioperative Open Lung Ventilatory Strategy (iPROVE). ClinicalTrials.gov Identifier: NCT02158923

112

Local Assessment of Ventilatory Management During General Anesthesia for Surgery (LAS VEGAS). ClinicalTrials.gov Identifier: NCT0160122

113

Jaber

S

Coisel

Y

Chanques

G

, et al. .

A multicentre observational study of intra-operative ventilatory management during general anaesthesia: tidal volumes and relation to body weight

.

Anaesthesia

2012

;

67

:

999

1008

114

Determann

RM

Royakkers

A

Wolthuis

EK

, et al. .

Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial

.

Critical Care

2010

;

14

:

R1

115

Patel

JM

Baker

R

Yeung

J

Small

C

;

West Midlands-Trainee Research and Audit Network (WM-TRAIN)

.

Intra-operative adherence to lung-protective ventilation: a prospective observational study

.

Perioper Med

2016

;

5

:

8

116

Lellouche

F

Dionne

S

Simard

S

, et al. .

High tidal volumes in mechanically ventilated patients increase organ dysfunction after cardiac surgery

.

Anesthesiology

2012

;

116

:

1072

82

117

Wirth

S

Baur

M

Spaeth

J

Guttmann

J

Schumann

S.

Intraoperative positive end-expiratory pressure evaluation using the intratidal compliance–volume profile

.

Br J Anaesth

2015

;

114

:

483

90

118

Wetterslev

J

Hansen

EG

Roikjaer

O

Kanstrup

IL

Heslet

L.

Optimizing peroperative compliance with PEEP during upper abdominal surgery: effects on perioperative oxygenation and complications in patients without preoperative cardiopulmonary dysfunction

.

Eur J Anaesthesiol

2001

;

18

:

358

65

119

Bohm

SH

Thamm

OC

von Sandersleben

A

, et al. .

Alveolar recruitment strategy and high positive end-expiratory pressure levels do not affect hemodynamics in morbidly obese intravascular volume-loaded patients

.

Anesth Analg

2009

;

109

:

160

3

120

Hong

CM

Da-Zhong

X

Lu

Q

, et al. .

Low tidal volume and high positive end-expiratory pressure mechanical ventilation results in increased inflammation and ventilator-associated lung injury in normal lungs

.

Anesth Analg

2010

;

110

:

1652

60

121

Hodgson

LE

Murphy

PB

Hart

N.

Respiratory management of the obese patient undergoing surgery

.

J Thorac Dis

2015

;

7

:

943

52

122

Ireland

CJ

Chapman

TM

Mathew

SF

Herbison

GP

Zacharias

M.

Continuous positive airway pressure (CPAP) during the postoperative period for prevention of postoperative morbidity and mortality following major abdominal surgery

.

Cochrane Database Syst Rev

2014

;

8

:

CD008930

123

Glossop

AJ

Shephard

N

Bryden

DC

Mills

GH.

Non-invasive ventilation for weaning, avoiding reintubation after extubation and in the postoperative period: a meta-analysis

.

Br J Anaesth

2012

;

109

:

305

14

124

Zarbock

A

Mueller

E

Netzer

S

Gabriel

A

Feindt

P

Kindgen-Milles

D.

Prophylactic nasal continuous positive airway pressure following cardiac surgery protects from postoperative pulmonary complications: a prospective, randomized, controlled trial in 500 patients

.

Chest

2009

;

135

:

1252

9

125

Carron

M

Zarantonello

F

Tellaroli

P

Ori

C.

Perioperative noninvasive ventilation in obese patients: a qualitative review and meta-analysis

.

Surg Obes Relat Dis

2015

;

12

:

681

91

126

High Flow Nasal Oxygen Therapy (Optiflow™) in High-risk Cardiac Surgical Patients. ClincialTrials.gov Identifier: NCT02496923

127

Parke

R

McGuinness

S

Dixon

R

Jull

A.

Open-label, phase II study of routine high-flow nasal oxygen therapy in cardiac surgical patients

.

Br J Anaesth

2013

;

111

:

925

31

128

Optiflow® to Prevent Post-Extubation Hypoxemia afteR Abdominal Surgery (the OPERA Trial) (OPERA). ClinicalTrials.gov Identifier: NCT01887015

129

Beecher

H

Todd

DPA.

Study of the deaths associated with anesthesia and surgery

.

Ann Surg

1954

;

140

:

2

34

130

Herbstreit

F

Zigrahn

D

Ochterbeck

C

Peters

J

Eikermann

M.

Neostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure

.

Anesthesiology

2010

;

113

:

1280

8

131

Caldwell

JE.

Reversal of residual neuromuscular block with neostigmine at one to four hours after a single intubating dose of vecuronium

.

Anesth Analg

1995

;

80

:

1168

74

132

Payne

JP

Hughes

R

Al Azawi

S.

Neuromuscular blockade by neostigmine in anaesthetized man

.

Br J Anaesth

1980

;

52

:

69

76

133

AAGBI Working party

.

Recommendations for Standards of Monitoring during Anaesthesia and Recovery 2015

.

London

:

AAGBI

,

2015

134

Brull

SJ

Prielipp

RC.

Reversal of neuromuscular blockade

.

Anesthesiology

2015

;

122

:

1183

5

135

Martinez-Ubieto

J

Ortega-Lucea

S

Pascual-Bellosta

A

, et al. .

Prospective study of residual neuromuscular block and postoperative respiratory complications in patients reverted with neostigmine versus sugammadex

.

Minerva Anestesiol

2016

;

82

:

735

42

136

Cammu

GV

Smet

V

De Jongh

K

Vadeput

D.

A prospective, observational study comparing postoperative residual curarisation and early adverse respiratory events in patients reversed with neostigmine or sugammadex or after apparent spontaneous recovery

.

Anaesth Intensive Care

2012

;

40

:

999

1006

137

Sherman

A

Abelansky

Y

Evron

S

Ezri

T.

The effect of sugammadex vs. neostigmine on the postoperative respiratory complications following laparoscopic sleeve gastrectomy

.

Eur J Anaesthesiol

2014

;

31

:

152

138

Ledowski

T

Falke

L

Johnston

F

, et al. .

Retrospective investigation of postoperative outcome after reversal of residual neuromuscular blockade: sugammadex, neostigmine or no reversal

.

Eur J Anaesthesiol

2014

;

31

:

423

9

139

Effects of Neuromuscular Block Reversal With Sugammadex vs Neostigmine on Postoperative Respiratory Outcomes After Major Abdominal Surgery. ClinicalTrials.gov Identifier: NCT02361060

140

Nelson

R

Edwards

S

Tse

B.

Prophylactic nasogastric decompression after abdominal surgery

.

Cochrane Database Syst Rev

2004

;

3

:

CD004929

141

Valkenet

K

van de Port

IG

Dronkers

JJ

de Vries

WR

Lindeman

E.

The effects of preoperative exercise therapy on postoperative outcome: a systematic review

.

Clin Rehabil

2011

;

25

:

99

111

142

Mans

CM

Reeve

JC

Elkins

MR.

Postoperative outcomes following preoperative inspiratory muscle training in patients undergoing cardiothoracic or upper abdominal surgery: a systematic review and meta analysis

.

Clin Rehabil

2015

;

29

:

426

38

143

Katsura

M

Kuriyama

A

Takeshima

T

Fukuhara

S

Furukawa

TA.

Preoperative inspiratory muscle training for postoperative pulmonary complications in adults undergoing cardiac and major abdominal surgery

.

Cochrane Database Syst Rev

2015

;

10

:

CD010356

144

Cassidy

MR

Rosenkranz

P

McCabe

K

Rosen

JE

McAneny

D.

I COUGH: reducing postoperative pulmonary complications with a multidisciplinary patient care program

.

JAMA Surg

2013

;

148

:

740

5

145

do Nascimento Junior

P

Módolo

NS

Andrade

S

Guimarães

MM

Braz

LG

El Dib

R.

Incentive spirometry for prevention of postoperative pulmonary complications in upper abdominal surgery

.

Cochrane Database Syst Rev

2014

;

2

:

CD006058

146

Agostini

P

Naidu

B

Cieslik

H

, et al. .

Effectiveness of incentive spirometry in patients following thoracotomy and lung resection including those at high risk for developing pulmonary complications

.

Thorax

2013

;

68

:

580

5

147

Pöpping

DM

Elia

N

Van Aken

HK

, et al. .

Impact of epidural analgesia on mortality and morbidity after surgery: systematic review and meta-analysis of randomized controlled trials

.

Ann Surg

2014

;

259

:

1056

67

148

Hausman

MS

Jr

Jewell

ES

Engoren

M.

Regional versus general anesthesia in surgical patients with chronic obstructive pulmonary disease: does avoiding general anesthesia reduce the risk of postoperative complications?

Anesth Analg

2015

;

120

:

1405

12

149

van Lier

F

van der Geest

PJ

Hoeks

SE

, et al. .

Epidural analgesia is associated with improved health outcomes of surgical patients with chronic obstructive pulmonary disease

.

Anesthesiology

2011

;

115

:

315

21

150

Dawson

D

Singh

M

Chung

F.

The importance of obstructive sleep apnoea management in peri-operative medicine

.

Anaesthesia

2016

;

71

:

251

6

© The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email:

© The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email:

Comments

1 Comment

Aspiration is a major postoperative pulmonary complication

10 May 2017

Réanimation, clinique de Parly 2, Ramsay Générale de Santé, 21 rue Moxouris, 78150 Le Chesnay, France

I read with interest this up-to-date review covering very broad and common topic-postoperative pulmonary complications (PPC).[1] First, diagnosis of tracheobronchitis is difficult and “purulent sputum with normal chest radiograph, no intravenous antibiotics” is false.[2]  The chest radiograph may be abnormal (bronchial abnormalities), and antibiotics may actually be needed.[3],[4] 

Finally, I would like to emphasize the major role of aspiration in PPC beyond the narrow definition of “acute lung injury after inhalation of regurgitated gastric contents”. Indeed, aspiration pneumonitis as previously defined when gross inhalation is witnessed by the staff and responsible for acute lung injury, is a serious disease.[5] However, “silent” micro aspiration may lead to tracheobronchitis, pneumonia, acute respiratory distress syndrome, respiratory infection and/or failure. As a matter of fact, when invasive ventilation is prolonged, aspiration is supposed to be a major trigger of ventilator-acquired complications.[6],[7] Even when invasive ventilation and intubation are shortened, aspiration may lead to significant PPC. This may be grossly approached by several means to decreasing colonization, aspiration, and/or its consequences that accordingly decrease PPC after surgery with relatively short period of intubation, including eradication of nasal carriage of Meticillin resistant Staphylococcus aureus by nasal mupirocin, and widening the antibiotic prophylaxis with second generation cefalosporin.[8],[9] Thus, any effort to decrease aspiration may translate into decreased PPC, including abovementioned procedures, adequate level of end-expiratory pressure, endotracheal cuff design and pressure, subglottic suction, up-right position (>30 to 45°), limitation of tracheal aspirates and nasogastric tubes whenever possible…[7],[10] 

References
1. Miskovic A, Lumb AB. Postoperative pulmonary complications. BJA Br J Anaesth 2017;118(3):317–34.
2. Champion S. Does this Patient Have Ventilator-associated Tracheobronchitis? Am J Med 2014;127(8):e25.
3. Martin-Loeches I, Povoa P, Rodríguez A, et al. Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): a multicentre, prospective, observational study. Lancet Respir Med 2015;3(11):859–68.
4. Nseir S, Martin-Loeches I, Makris D, et al. Impact of appropriate antimicrobial treatment on transition from ventilator-associated tracheobronchitis to ventilator-associated pneumonia. Crit Care 2014;18(3):R129.
5. Lee A, Festic E, Park PK, et al. Characteristics and Outcomes of Patients Hospitalized Following Pulmonary Aspiration. Chest 2014;146(4):899–907.
6. Raghavendran K, Nemzek J, Napolitano LM, Knight PR. Aspiration-induced lung injury: Crit Care Med 2011;39(4):818–26.
7. Jaillette E, Girault C, Brunin G, et al. Impact of tapered-cuff tracheal tube on microaspiration of gastric contents in intubated critically ill patients: a multicenter cluster-randomized cross-over controlled trial. Intensive Care Med 2017;
8. Perl TM, Cullen JJ, Wenzel RP, et al. Intranasal Mupirocin to Prevent Postoperative Staphylococcus aureus Infections. N Engl J Med 2002;346(24):1871–7.
9. Lador A, Nasir H, Mansur N, et al. Antibiotic prophylaxis in cardiac surgery: systematic review and meta-analysis. J Antimicrob Chemother 2012;67(3):541–50.
10. Jaillette E, Martin-Loeches I, Artigas A, Nseir S. Optimal care and design of the tracheal cuff in the critically ill patient. Ann Intensive Care 2014;4(1):7.

Submitted on 10/05/2017 6:42 PM GMT

How can I reduce the risk of pneumonia after surgery?

​​​​​It's important to practice deep breathing and coughing after surgery. These exercises will help your breathing, clear your lungs, and lower your risk of pneumonia. Breathe deeply and cough every hour while you're awake for the first 2 to 3 days after minor surgery.

Is pneumonia common after abdominal surgery?

Additionally, patients who are undergoing abdominal or thoracic surgery have a greater chance of developing postoperative pneumonia.

How are a patients lungs affected after abdominal surgery?

It is well documented that the function of the respiratory muscles is affected during and after abdominal surgery. It has been suggested that respiratory muscle dysfunction may be responsible for a number of pulmonary complications including atelectasis and pneumonia.

What preventive tips can you suggest to avoid pneumonia?

You can help prevent pneumonia by doing the following:.
Get the flu vaccine each year. People can develop bacterial pneumonia after a case of the flu. ... .
Get the pneumococcal vaccine. ... .
Practice good hygiene. ... .
Don't smoke. ... .
Practice a healthy lifestyle. ... .
Avoid sick people..