Toán 11 bài 1 phương pháp quy nạp

Toán 11 bài 1 phương pháp quy nạp

Nội dung bài viết gồm 2 phần:

  • Ôn tập lý thuyết
  • Hướng dẫn giải bài tập sgk

Để chứng minh một mệnh đề P(n) là đúng với mọi n Є N*, ta thường dùng phương pháp quy nạp toán học, được tiến hành theo hai bước như sau:

  • Bước 1 (bước cơ sở): Kiểm tra mệnh đề P(n) đúng với n = 1.
  • Bước 2 ( bước quy nạp): Giả thiết mệnh đề P(n) đúng với một số tự nhiên bất kì n = k, (k ≥ 1) (ta gọi là giả thiết quy nạp) và chứng minh rằng nó cũng đúng với n = k + 1.

Chú ý:

Nếu phải chứng minh một mệnh đề là đúng với mọi số tự nhiên n ≥ p (p là số tự nhiên) thì:

  • Ở bước 1, ta kiểm tra mệnh đề đúng với n = p.
  • Ở bước 2, ta giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k, (k ≥ p) và chứng minh rằng nó cũng đúng với n = k + 1.

B. Bài tập và hướng dẫn giải

Câu 1: Trang 82 - sgk đại số và giải tích 11

Chứng minh rằng với n Є N*, ta có đẳng thức:

a) 2 + 5+ 8+.... + 3n - 1 = \( \frac{n(3n+1)}{2}\);

b) \( \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^{n}}=\frac{2^{n}-1}{2^{n}}\);

c) 12 + 22 + 32 +….+ n2 = \( \frac{n(n+1)(2n+1)}{6}\).

=> Xem hướng dẫn giải

Câu 2: Trang 82 - sgk đại số và giải tích 11

Chứng minh rằng với n ε  N*    ta luôn có:

a) n3 + 3n2 + 5n chia hết cho 3;

b) 4n + 15n - 1 chia hết cho 9;

c) n3 + 11n chia hết cho 6.

=> Xem hướng dẫn giải

Câu 3: Trang 82 - sgk đại số và giải tích 11

Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có các bất đẳng thức:

a) 3n > 3n + 1;                  

b) 2n + 1 > 2n + 3

=> Xem hướng dẫn giải

Câu 4: Trang 83 - sgk đại số và giải tích 11

Toán 11 bài 1 phương pháp quy nạp

a) Tính S1, S2, S3.

b) Dự đoán công thức tính tổng Sn và chứng minh bằng quy nạp.

=> Xem hướng dẫn giải

Câu 5: Trang 82 - sgk đại số và giải tích 11

Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là $\frac{n(n-3)}{2}$

=> Xem hướng dẫn giải

Trắc nghiệm đại số và giải tích 11 bài 1: Phương pháp quy nạp toán học

Phương pháp: Giả sử cần chứng minh đẳng thức \(P(n) = Q(n)\) (hoặc \(P(n) > Q(n)\)) đúng với \(\forall n \ge {n_0},{\rm{ }}{n_0} \in \mathbb{N}\) ta thực hiện các bước sau:

Bước 1: Tính \(P({n_0}),{\rm{ }}Q({n_0})\) rồi chứng minh \(P({n_0}) = Q({n_0})\)

Bước 2: Giả sử \(P(k) = Q(k);{\rm{ }}k \in \mathbb{N},k \ge {n_0}\), ta cần chứng minh

\(P(k + 1) = Q(k + 1)\).

Ví dụ 1:

Chứng minh rằng \(\forall n \in {{\rm N}^*}\) ta luôn có đẳng thức sau:

\(1 + 2 + ... + n = \,\frac{{n(n + 1)}}{2}\)

Hướng dẫn:

Đặt \({A_n} = 1 + 2 + ... + n = \,\frac{{n(n + 1)}}{2}\,\)

Với n=1, ta có: \(1 = \frac{{1.(1 + 1)}}{2} = 1\) (đúng)

Giả sử với \(n = k \ge 1\) ta có:

\({A_n} = 1 + 2 + ... + n = \,\frac{{n(n + 1)}}{2}\,\) (giả thiết quy nạp)

Ta phải chứng minh: \({A_{n + 1}} = 1 + 2 + ... + n + (n + 1) = \,\frac{{(n + 1)(n + 2)}}{2}\)

Ta có: \({A_{n + 1}} = 1 + 2 + ... + n + (n + 1) = \,\frac{{n(n + 1)}}{2} + (n + 1)\) 

\(\Leftrightarrow {A_{n + 1}} = \,\frac{{n(n + 1) + 2(n + 1)}}{2} = \frac{{(n + 1)(n + 2)}}{2}\) ( điều phải chứng minh).

Vậy \(1 + 2 + ... + n = \,\frac{{n(n + 1)}}{2}\) \(\forall n \in {{\rm N}^*}\).

Ví dụ 2:

Chứng minh rằng \(\forall n \in {{\rm N}^*}\) ta luôn có đẳng thức sau:

\(1 + 3 + ... + {(2n - 1)^2} = \,\frac{{n(4{n^2} - 1)}}{3}\)

Hướng dẫn:

Đặt \({A_n} = 1 + 3 + ... + {(2n - 1)^2} = \,\frac{{n(4{n^2} - 1)}}{3}\) 

Với n= 1: \({(2.1 - 1)^2} = \frac{{1.({{4.1}^2} - 1)}}{3} = 1\) (đúng)

Giả sử với \(n = k \ge 1\) ta có:

\(1 + 3 + ... + {(2n - 1)^2} = \,\frac{{n(4{n^2} - 1)}}{3}\) (giả thiết quy nạp)

Ta phải chứng minh: 

\({A_{n + 1}} = 1 + 3 + ... + {(2n - 1)^2} + \,{[2(n + 1) - 1]^2} = \,\frac{{(n + 1)[4{{(n + 1)}^2} - 1]}}{3}\,\)

Ta có: \(VT = 1 + 3 + ... + {(2n - 1)^2} + \,{[2(n + 1) - 1]^2}\) 

Theo giả thiết quy nạp ở trên: \(VT = \frac{{n(4{n^2} - 1)}}{3} + \,{[2(n + 1) - 1]^2}\)

= \(\frac{{4{n^3} - n + 3{{(2n + 1)}^2}}}{3}\) \(= \frac{{4{n^3} - n + 12{n^2} + 12n + 3}}{3}\)

\(= \frac{{4{n^3} + 12{n^2} + 11n + 3}}{3}\) \(= \frac{{4{n^3} + 4{n^2} + \,8{n^2} + 8n + 3n + 3}}{3}\)

\(VT = \frac{{(n + 1)(4{n^2} + 8n + 3)}}{3}\) (1)

Ta lại có: \({\rm{VP}} = \,\frac{{(n + 1)[4{{(n + 1)}^2} - 1]}}{3}\,\)

\(= \,\frac{{(n + 1)[4({n^2} + 2n + 1) - 1]}}{3}\,\)

\(= \,\frac{{(n + 1)(4{n^2} + 8n + 4 - 1)}}{3}\,\)

\({\rm{VP}} = \,\frac{{(n + 1)(4{n^2} + 8n + 3)}}{3}\,\) (2)

Từ (1) và (2): \({A_{n + 1}} = 1 + 3 + ... + {(2n - 1)^2} + \,{[2(n + 1) - 1]^2} = \,\frac{{(n + 1)[4{{(n + 1)}^2} - 1]}}{3}\,\)

Vậy \(1 + 3 + ... + {(2n - 1)^2} = \,\frac{{n(4{n^2} - 1)}}{3}\) \(\forall n \in {{\rm N}^*}\).

 

Ví dụ 3:

Chứng mình với mọi số tự nhiên \(n \ge 1\) ta luôn có: \(1 + 2 + 3 + ... + n = \frac{{n(n + 1)}}{2}\)

Lời giải:

Đặt \(P(n) = 1 + 2 + 3 + ... + n\) : tổng n số tự nhiên đầu tiên : \(Q(n) = \frac{{n(n + 1)}}{2}\)

Ta cần chứng minh \(P(n) = Q(n){\rm{  }}\forall n \in \mathbb{N},n \ge 1\).

Bước 1: Với \(n = 1\) ta có \(P(1) = 1,{\rm{ }}Q(1) = \frac{{1(1 + 1)}}{2} = 1\)

\( \Rightarrow P(1) = Q(1) \Rightarrow (1)\) đúng với \(n = 1\).

Bước 2: Giả sử \(P(k) = Q(k)\) với \(k \in \mathbb{N},k \ge 1\) tức là:

\(1 + 2 + 3 + ... + k = \frac{{k(k + 1)}}{2}\)  (1)

Ta cần chứng minh \(P(k + 1) = Q(k + 1)\), tức là:

\(1 + 2 + 3 + ... + k + (k + 1) = \frac{{(k + 1)(k + 2)}}{2}\)  (2)

Thật vậy: \(VT(2) = (1 + 2 + 3 + ... + k) + (k + 1)\) 

                             \( = \frac{{k(k + 1)}}{2} + (k + 1)\)       (Do đẳng thức (1))

                            \( = (k + 1)(\frac{k}{2} + 1) = \frac{{(k + 1)(k + 2)}}{2} = VP(2)\)

Vậy đẳng thức cho  đúng với mọi \(n \ge 1\).

 

Ví dụ 4:

Chứng minh với mọi số tự nhiên \(n \ge 1\) ta luôn có: \(1 + 3 + 5 + ... + 2n - 1 = {n^2}\)

Lời giải:

\( \bullet \) Với \(n = 1\) ta có \({\rm{VT}} = 1,{\rm{ VP}} = {1^2} = 1\)

Suy ra \(VT = VP \Rightarrow \) đẳng thức cho đúng với \(n = 1\).

\( \bullet \) Giả sử đẳng thức cho  đúng với \(n = k\) với \(k \in \mathbb{N},k \ge 1\) tức là:

\(1 + 3 + 5 + ... + 2k - 1 = {k^2}\)  (1)

Ta cần chứng minh đẳng thức cho  đúng với \(n = k + 1\), tức là:

\(1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = {\left( {k + 1} \right)^2}\)  (2)

Thật vậy: \(VT(2) = (1 + 3 + 5 + ... + 2k - 1) + (2k + 1)\) 

                             \( = {k^2} + (2k + 1)\)       (Do đẳng thức (1))

                            \( = {(k + 1)^2} = VP(1.2)\)

Vậy đẳng thức cho  đúng với mọi \(n \ge 1\).

Vấn đề 2: Ứng dụng phương pháp quy nạp trong số học và trong hình học

Ví dụ 5:

Chứng minh rằng \(\forall n \in {{\rm N}^*}\) :

\({n^3} + 2n\) chia hết cho 3.

Hướng dẫn:

Đặt \({A_n} = {n^3} + 2n\)

Với n= 1: \({A_n} = 1 + 2 = 3\, \vdots \,3\)

Giả sử với \(n = k \ge 1\) ta có:

\({A_n} = {n^3} + 2n\,\, \vdots \,\,3\) (giả thiết quy nạp)

Ta phải chứng minh: 

\({A_{n + 1}} = {(n + 1)^3} + 2(n + 1)\,\, \vdots \,\,3\)

Ta có: \({A_{n + 1}} = {(n + 1)^3} + 2(n + 1)\, = \,{n^3} + 3{n^2} + 3n + 1 + 2n + 2\)

\(= \,{n^3} + 2n + 3({n^2} + n + 1)\)

Theo giả thiết quy nạp: \({n^3} + 2n\,\, \vdots \,\,3\) 

Đồng thời: \(3({n^2} + n + 1)\,\, \vdots \,\,3\)

Vậy \({A_{n + 1}} = {(n + 1)^3} + 2(n + 1)\,\, \vdots \,\,3\)

Kết luận: \({n^3} + 2n\,\, \vdots \,\,3\) \(\forall n \in {{\rm N}^*}\)

 

Ví dụ 6:

Cho \(n\) là số tự nhiên dương. Chứng minh rằng: \({a_n} = {16^n}-15n-1 \vdots 225\)

Hướng dẫn:

\( \bullet \) Với \(n = 1\) ta có: \({a_1} = 0 \Rightarrow {a_1} \vdots 225\).

\( \bullet \) Giả sử \({a_k} = {16^k} - 15k - 1 \vdots 225\), ta chứng minh

\({a_{k + 1}} = {16^{k + 1}} - 15(k + 1) - 1 \vdots 225\)

Thậ vậy: \({a_{k + 1}} = {16.16^k} - 15k - 16 = {16^k} - 15k - 1 - 15\left( {{{16}^k} - 1} \right)\)

                      \( = {a_k} - 15\left( {{{16}^k} - 1} \right)\)

Vì \({16^k} - 1 = 15.\left( {{{16}^{k - 1}} + {{16}^{k - 2}} + ... + 1} \right) \vdots 15\) và \({a_k} \vdots 225\)

Nên ta suy ra \({a_{k + 1}} \vdots 225\). Vậy bài toán được chứng minh.

Ví dụ 7:

Chứng minh rằng tổng các trong một n – giác lồi \((n \ge 3)\) bằng \((n - 2){180^0}\).

Lời giải:

\( \bullet \) Với \(n = 3\) ta có tổng ba góc trong tam giác bằng \({180^0}\)

\( \bullet \) Giả sử công thức đúng cho tất cả k-giác, với \(k < n\), ta phải chứng minh mệnh đề cũng đúng cho n-giác. Ta có thể chia n-giác bằng một đường chéo thành ra hai đa giác. Nếu số cạnh của một đa giác là k+1, thì số cạnh của đa giác kia là n – k + 1, hơn nữa cả hai số này đều nhỏ hơn n. Theo giả thiết quy nạp tổng các góc của hai đa giác này lần lượt là \(\left( {k - 1} \right){180^0}\) và \(\left( {n - k - 1} \right){180^0}\).

Tổng các góc của n-giác bằng tổng các góc của hai đa giác trên, nghĩa là \((k - 1 + n - k - 1){180^0} = (n - 2){180^0}\)

Suy ra mệnh đề đúng với mọi \(n \ge 3\).