Viết pttq của đường thẳng đi qua A và song song

Trong môn toán lớp 10, phương trình đường thẳng là kiến thức quan trọng được chú ý giảng dạy. Đây là dạng bài tập không quá khó nhưng lại rất dễ bị nhầm lẫn trong lúc giải. Để giải được bài tập này đòi hỏi bạn phải nhớ lý thuyết và tập giải nhiều lần. Bài viết sau đây capdoihoanhao.vn sẽ gửi đến bạn cách giải bài tập liên quan đến phương trình đường thẳng. Các bạn hãy lưu ý nhé!

Viết pttq của đường thẳng đi qua A và song song

Phương trình đường thẳng là kiến thức trọng tâm của môn Toán lớp 10
Tóm tắt lý thuyết phương trình đường thẳngVectơ pháp tuyến và phương trình tổng quát của đường thẳngVectơ chỉ phương và phương trình tham số, phương trình chính tắc của đường thẳng

Vectơ pháp tuyến và phương trình tổng quát của đường thẳng

Vectơ pháp tuyến của đường thẳng

Vectơ n khác 0 và có giá vuông góc với đường thẳng được xem là vectơ pháp tuyến của đường thẳng. Khi đó, với k khác 0, vecto kn cũng là vectơ pháp tuyến của đường thẳng đó

Phương trình tổng quát của đường thẳng

Để viết phương trình tổng quát của đường thẳng d ta cần xác định :

– Điểm A(x0; y0) thuộc d

– Một vectơ pháp tuyến n( a; b) của d

Khi đó phương trình tổng quát của d là: a(x-x0) + b(y-y0) = 0

* Cho đường thẳng d: ax+ by+ c= 0 nếu đường thẳng d// ∆ thì đường thẳng ∆ có dạng: ax + by + c’ = 0 (c’ ≠ c) .

Bạn đang xem: Viết phương trình đường thẳng đi qua 1 điểm và song song với đường thẳng

Viết pttq của đường thẳng đi qua A và song song

Trong các đề thi thì phương trình đường thẳng luôn là câu để học sinh lấy điểm

Vectơ chỉ phương và phương trình tham số, phương trình chính tắc của đường thẳng

Vectơ chỉ phương của đường thẳng

Vectơ a khác 0 và có giá song song hoặc trùng với đường thẳng được xem là vectơ chỉ phương của đường thẳng. Khi đó, với k khác 0 và vecto ka cũng là vectơ chỉ phương của đường thẳng đó.

Phương trình tham số của đường thẳng

Để viết phương trình tham số của đường thẳng ∆ ta cần xác định

– Điểm A(x0, y0) ∈ ∆

Viết pttq của đường thẳng đi qua A và song song

Để viết phương trình chính tắc của đường thẳng ∆ ta cần xác định

– Điểm A(x0, y0) ∈ ∆

Viết pttq của đường thẳng đi qua A và song song

(trường hợp ab = 0 thì đường thẳng không có phương trình chính tắc)

Chú ý:

– Nếu hai đường thẳng song song với nhau thì chúng có cùng VTCP và VTPT.

– Hai đường thẳng vuông góc với nhau thì VTCP của đường thẳng này là VTPT của đường thẳng kia và ngược lại

Viết pttq của đường thẳng đi qua A và song song

Hãy tham khảo video sau đây để hiểu hơn về phương trình đường thẳng nhé!

Phương trình chính tắc của đường thẳng

Trong mặt phẳng với hệ trục toạ độ vuông góc OxyOxy, cho đường thẳng dd

Viết pttq của đường thẳng đi qua A và song song

qua M0 (x0; y0) và nhận

làm vectơ chỉ phương. Phương trình tham số của đường thẳng dd là

Viết pttq của đường thẳng đi qua A và song song

Trong trường hợp a và b đều khác 0 thì

Viết pttq của đường thẳng đi qua A và song song

ta có phương trình chính tắc của đường thẳng d là

Viết pttq của đường thẳng đi qua A và song song

Phương trình chính tắc của đường thẳngPhương trình đường thẳng đi qua 2 điểm

Cách 1: 

Giả sử 2 điểm A và B cho trước có tọa độ là: A(a1;a2) và B(b1;b2)

Gọi phương trình đường thẳng có dạng d: y=ax+b

Vì A và B thuộc phương trình đường thẳng d nên ta có hệ

Viết pttq của đường thẳng đi qua A và song song

Thay a và b ngược lại phương trình đường thẳng d sẽ được phương trình đường thẳng cần tìm.

Cách 2 giải nhanh

Tổng quát dạng bài viết phương trình đường thẳng đi qua 2 điểm: Viết phương trình đường thẳng đi qua 2 điểm A(x1;y1) và B(x2;y2).

Cách giải:

Giả sử đường thẳng đi qua 2 điểm A(x1;y1) và B(x2;y2) có dạng: y = ax + b (y*)

Vì (y*) đi qua điểm A(x1;y1) nên ta có: y1=ax1 + b (1)

Vì (y*) đi qua điểm B(x2;y2) nên ta có: y2=ax2 + b (2)

Từ (1) và (2) giải hệ ta tìm được a và b. Thay vào sẽ tìm được phương trình đường thẳng cần tìm.

Khoảng cách từ 1 điểm tới 1 đường thẳng

 Cho đường thẳng d: ax + by + c = 0 và điểm M ( x0; y0). Khi đó khoảng cách từ điểm M đến đường thẳng d là: d(M; d) =

Viết pttq của đường thẳng đi qua A và song song

+ Cho điểm A( xA; yA) và điểm B( xB; yB) . Khoảng cách hai điểm này là :

AB =

Viết pttq của đường thẳng đi qua A và song song

Chú ý: Trong trường hợp đường thẳng d chưa viết dưới dạng tổng quát thì đầu tiên ta cần đưa đường thẳng d về dạng tổng quát.

Vị trí tương đối của 2 đường thẳng

Cho hai đường thẳng d1: a1x + b1y + c1 = 0 và d2: a2x + b2y + c2 = 0. Xét vị trí tương đối của hai đường thẳng d1 và d2:

+ Cách 1: Áp dụng trong trường hợp a1.b1.c1 ≠ 0:

Viết pttq của đường thẳng đi qua A và song song

Các vị trí tương đối của hai đường thẳng

Cách 2: Dựa vào số điểm chung của hai đường thẳng trên ta suy ra vị trí tương đối của hai đường thẳng

Giao điểm của hai đường thẳng d1 và d2( nếu có) là nghiệm hệ phương trình:

Viết pttq của đường thẳng đi qua A và song song

Nếu hệ phương trình trên có một nghiệm duy nhất thì 2 đường thẳng cắt nhau.

Nếu hệ phương trình trên có vô số nghiệm thì 2 đường thẳng trùng nhau.

Xem thêm:

Nếu hệ phương trình trên vô nghiệm thì 2 đường thẳng song song.

Các dạng toán về phương trình đường thẳng

Dạng 1: Viết PT đường thẳng (d) qua 1 điểm và có VTCP

– Điểm M0(x0;y0;z0), VTCP

Viết pttq của đường thẳng đi qua A và song song

* Phương pháp:

– Phương trình tham số của (d) là: 

Viết pttq của đường thẳng đi qua A và song song

– Nếu a.b.c ≠ 0 thì (d) có PT chính tắc là: 

Viết pttq của đường thẳng đi qua A và song song

Ví dụ: Viết phương trình đường thẳng (d) đi qua điểm A(1;2;-1) và nhận vec tơ

Viết pttq của đường thẳng đi qua A và song song

(1;2;3) làm vec tơ chỉ phương.

* Lời giải:

– Phương trình tham số của (d) là: 

Viết pttq của đường thẳng đi qua A và song song

Dạng 2: Viết PT đường thẳng đi qua 2 điểm A, B

* Phương pháp

– Bước 1: Tìm VTCP 

Viết pttq của đường thẳng đi qua A và song song

– Bước 2: Viết PT đường thẳng (d) đi qua A và nhận

Viết pttq của đường thẳng đi qua A và song song

làm VTCP.

Ví dụ: Viết PTĐT (d) đi qua các điểm A(1; 2; 0), B(–1; 1; 3);

* Lời giải:

– Ta có: 

Viết pttq của đường thẳng đi qua A và song song

(-2;-1;3)

– Vậy PTĐT (d) đi qua A có VTCP là 

Viết pttq của đường thẳng đi qua A và song song

 có PT tham số: 

Viết pttq của đường thẳng đi qua A và song song

Dạng 3: Viết PT đường thẳng đi qua A và song song với đường thẳng Δ

* Phương pháp

– Bước 1: Tìm VTCP 

– Bước 2: Viết PT đường thẳng (d) đi qua A và nhận vecto u làm vecto chỉ phương.

Ví dụ: Viết phương trình đường thẳng đi qua A(2;1;-3) và song song với đường thẳng Δ: 

Viết pttq của đường thẳng đi qua A và song song

 làm VTCP

– Phương trình tham số của (d): 

Viết pttq của đường thẳng đi qua A và song song

Dạng 4: Viết PT đường thẳng (d) đi qua A và vuông góc với mp (∝).

* Phương pháp

– Bước 1: Tìm VTPT vecto n của mp (∝)

– Bước 2: Viết PT đường thẳng (d) đi qua A và nhận vecto n làm vecto chỉ phương.

Bài tập áp dụng phương trình đường thẳng

Bài tập 1: Viết phương trình đường thẳng đi qua hai điểm A (1;2) và B(0;1).

Bài giải: 

Gọi phương trình đường thẳng là d: y=ax+by=ax+b

Vì đường thẳng d đi qua hai điểm A và B nê n ta có:

Viết pttq của đường thẳng đi qua A và song song

Thay a=1 và b=1 vào phương trình đường thẳng d thì d là: y=x+1

Vậy phương trình đường thẳng đi qua 2 điểm A và B là : y=x+1

Bài tập 2: Cho Parabol (P):y=–ײ . Viết phương trình đường thẳng đi qua hai điểm A và B biết A và B là hai điểm thuộc (P) và có hoành độ lần lượt là 1 và 2.

Bài giải

Với bài toán này chúng ta chưa biết được tọa độ của A và B là như nào. Tuy nhiên bài toán lại cho A và B thuộc (P) và có hoành độ rồi. Chúng ta cần đi tìm tung độ của điểm A và B là xong.

Tìm tọa độ của A và B:

Vì A có hoành độ bằng -1 và thuộc (P) nên ta có tung độ y =−(1)²=–1 => A(1;−1)

Bài viết trên đã gửi đến bạn lý thuyết cũng như những bài tập về phương trình đường thẳng. Hy vọng bài viết trên có thể giúp ích được cho bạn trong việc giải bài tập. Phương trình đường thẳng là yêu cầu của rất nhiều bài tập cũng như trong đề thi nên các bạn hãy lưu ý nhé!